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0.1 INTRODUCTION.

The purpose of this text is to provide the students with the theoretical background
and engineering applications of the theory of vibrations of mechanical systems. It is
divided into two parts. Part one,Modelling and Analysis, is devoted to this solu-
tion of these engineering problems that can be approximated by means of the linear
models. The second part, Experimental Investigation, describes the laboratory
work recommended for this course.

Part one consists of four chapters.
The first chapter, Mechanical Vibration of One-Degree-Of-Freedom

Linear System, illustrates modelling and analysis of these engineering problems
that can be approximated by means of the one degree of freedom system. Infor-
mation included in this chapter, as a part of the second year subject Mechanics 1,
where already conveyed to the students and are not to be lectured during this course.
However, since this knowledge is essential for a proper understanding of the following
material, students should study it in their own time.

Chapter two is devoted to modeling and analysis of these mechanical systems
that can be approximated by means of the Multi-Degree-Of-Freedom models.
The Newton’s-Euler’s approach, Lagrange’s equations and the influence coefficients
method are utilized for the purpose of creation of the mathematical model. The
considerations are limited to the linear system only. In the general case of damping
the process of looking for the natural frequencies and the system forced response
is provided. Application of the modal analysis to the case of the small structural
damping results in solution of the initial problem and the forced response. Dynamic
balancing of the rotating elements and the passive control of vibrations by means of
the dynamic absorber of vibrations illustrate application of the theory presented to
the engineering problems.

Chapter three, Vibration of Continuous Systems, is concerned with the
problems of vibration associated with one-dimensional continuous systems such as
string, rods, shafts, and beams. The natural frequencies and the natural modes are
used for the exact solutions of the free and forced vibrations. This chapter forms a
base for development of discretization methods presented in the next chapter

In chapter four, Approximation of the Continuous Systems by Dis-
crete Models, two the most important, for engineering applications, methods of
approximation of the continuous systems by the discrete models are presented. The
Rigid Element Method and the Final Element Method are explained and utilized to
produce the inertia and stiffness matrices of the free-free beam. Employment of these
matrices to the solution of the engineering problems is demonstrated on a number of
examples. The presented condensation techniques allow to keep size of the discrete
mathematical model on a reasonably low level.

Each chapter is supplied with several engineering problems. Solution to some
of them are provided. Solution to the other problems should be produced by students
during tutorials and in their own time.

Part two gives the theoretical background and description of the laboratory
experiments. One of them is devoted to the experimental determination of the nat-
ural modes and the corresponding natural frequencies of a Multi-Degree-Of-Freedom-
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System. The other demonstrates the balancing techniques.
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Modelling is the part of solution of an engineering problems that aims to-
wards producing its mathematical description. This mathematical description can
be obtained by taking advantage of the known laws of physics. These laws can not
be directly applied to the real system. Therefore it is necessary to introduce many
assumptions that simplify the engineering problems to such extend that the physic
laws may be applied. This part of modelling is called creation of the physical model.
Application of the physics law to the physical model yields the wanted mathematical
description that is called mathematical model. Process of solving of the mathematical
model is called analysis and yields solution to the problem considered. One of the
most frequently encounter in engineering type of motion is the oscillatory motion of
a mechanical system about its equilibrium position. Such a type of motion is called
vibration. This part deals with study of linear vibrations of mechanical system.



Chapter 1

MECHANICAL VIBRATION OF ONE-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

DEFINITION: Any oscillatory motion of a mechanical system about its
equilibrium position is called vibration.

1.1 MODELLING OF ONE-DEGREE-OF-FREEDOM SYSTEM

DEFINITION: Modelling is the part of solution of an engineering problem
that aims for producing its mathematical description.

The mathematical description of the engineering problem one can obtain by
taking advantage of the known lows of physics. These lows can not be directly
applied to the real system. Therefore it is necessary to introduce many assumptions
that simplify the problem to such an extend that the physic laws may by apply. This
part of modelling is called creation of the physical model. Application of the physics
law to the physical model yields the wanted mathematical description which is called
mathematical model.
1.1.1 Physical model
As an example of vibration let us consider the vertical motion of the body 1 suspended
on the rod 2 shown in Fig. 1. If the body is forced out from its equilibrium position
and then it is released, each point of the system performs an independent oscillatory
motion. Therefore, in general, one has to introduce an infinite number of independent
coordinates xi to determine uniquely its motion.

t 

x i
i

1 
2 

Figure 1
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DEFINITION: The number of independent coordinates one has to use to
determine the position of a mechanical system is called number of degrees of
freedom

According to this definition each real system has an infinite number of degrees
of freedom. Adaptation of certain assumptions, in many cases, may results in reduc-
tion of this number of degrees of freedom. For example, if one assume that the rod
2 is massless and the body 1 is rigid, only one coordinate is sufficient to determine
uniquely the whole system. The displacement x of the rigid body 1 can be chosen as
the independent coordinate (see Fig. 2).

t 

x 

i

x 

ix 

1 
2 

Figure 2

Position xi of all the other points of our system depends on x. If the rod
is uniform, its instantaneous position as a function of x is shown in Fig. 2. The
following analysis will be restricted to system with one degree of freedom only.

To produce the equation of the vibration of the body 1, one has to produce
its free body diagram. In the case considered the free body diagram is shown in Fig.
3.

t 

x 

1 

R 

G 

Figure 3

The gravity force is denoted by G whereas the force R represents so called
restoring force. In a general case, the restoring force R is a non-linear function of
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the displacement x and the instantaneous velocity ẋ of the body 1 (R = R(x, ẋ)).
The relationship between the restoring force R and the elongation x as well as the
velocity ẋ is shown in Fig. 4a) and b) respectively.

x x . 

R R 

0 0 

a) b) 

Figure 4

If it is possible to limit the consideration to vibration within a small vicinity
of the system equilibrium position, the non-linear relationship, shown in Fig. 4 can
be linearized.

R=R(x, ẋ) ≈ kx+ cẋ (1.1)

The first term represents the system elasticity and the second one reflects the system’s
ability for dissipation of energy. k is called stiffness and c is called coefficient of
damping. The future analysis will be limited to cases for which such a linearization
is acceptable form the engineering point of view. Such cases usually are refer to as
linear vibration and the system considered is call linear system.

Result of this part of modelling is called physical model. The physical model
that reflects all the above mention assumption is called one-degree-of-freedom linear
system. For presentation of the physical model we use symbols shown in the Fig. 5.
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m

ϕ

x

m,I

m

k

A, J, E

ϕ

k

c

ϕ.
c

rigid block of mass

rigid body of mass 

m

m and moment of inertia I

particle of of mass m

massless spring of stifness  k

massless beam area        second moment of area       and Young modulus  A,  J  E

(linear motion)

(angular motion)

(linear motion)

massless spring of stifness  k (angular motion)

massless damper of damping coefficient   c (linear motion)

massless damper of damping coefficient   c (angular motion)

Figure 5

1.1.2 Mathematical model
To analyze motion of a system it is necessary to develop a mathematical description
that approximates its dynamic behavior. This mathematical description is referred to
as the mathematical model. This mathematical model can be obtained by application
of the known physic lows to the adopted physical model. The creation of the phys-
ical model, has been explained in the previous section. In this section principle of
producing of the mathematical model for the one-degree-of-freedom system is shown.

Let us consider system shown in Fig. 6.
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k 

m

c x 

mg

s k x 

Figure 6

Let as assume that the system is in an equilibrium. To develop the mathe-
matical model we take advantage of Newton’s generalized equations. This require
introduction of the absolute system of coordinates. In this chapter we are assuming
that the origin of the absolute system of coordinates coincides with the centre of
gravity of the body while the body stays at its equilibrium position as shown in Fig.
6. The resultant force of all static forces (in the example considered gravity force
mg and interaction force due to the static elongation of spring kxs) is equal to zero.
Therefore, these forces do not have to be included in the Newton’s equations. If the
system is out of the equilibrium position (see Fig. 7) by a distance x, there is an
increment in the interaction force between the spring and the block. This increment
is called restoring force.

k 

m

c x 

mg

s k x 

-k\x\=-kx 

x>0

x<0

k\x\=-kx 

Figure 7

In our case the magnitude of the restoring force is |FR| = k |x|
If x > 0, the restoring force is opposite to the positive direction of axis x.

Hence FR = −k |x| = −kx
If x < 0, the restoring force has the same direction as axis x. Hence FR =

+k |x| = −kx
Therefore the restoring force always can be represented in the equation of motion by
term

FR = −kx (1.2)
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k 

m

c x 

mg

s k x 
-c\x\=-cx 

x>0 x<0

. .

.

+c\x\=-cx 
. .

.

Figure 8

Creating the equation of motion one has to take into consideration the interac-
tion force between the damper and the block considered (see Fig. 8). This interaction
force is called damping force and its absolute value is |FD| = c |ẋ| . A very similar to
the above consideration leads to conclusion that the damping force can be represented
in the equation of motion by the following term

FD = −cẋ (1.3)

k 

m

c x 

F   (t)ex 

Figure 9

The assumption that the system is linear allows to apply the superposition
rules and add these forces together with the external force Fex(t) (see Fig. 9). Hence,
the equation of motion of the block of mass m is

mẍ = −kx− cẋ+ Fex(t) (1.4)

Transformation of the above equation into the standard form yields

ẍ+ 2ςωnẋ+ ω2nx = f(t) (1.5)

where
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ωn =

r
k

m
; 2ςωn =

c

m
; f(t) =

Fex(t)

m
(1.6)

ωn - is called natural frequency of the undamped system
ς - is called damping factor or damping ratio
f(t) - is called unit external excitation
The equation 1.5 is known as the mathematical model of the linear vibration

of the one-degree-of-freedom system.
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1.1.3 Problems
Problem 1

A

c

y

k1

k2

m

Figure 10

The block of mass m (see Fig. 10)is restricted to move along the vertical axis.
It is supported by the spring of stiffness k1, the spring of stiffness k2 and the damper
of damping coefficient c. The upper end of the spring k2 moves along the inertial axis
y and its motion is governed by the following equation

yA = a sinωt

were a is the amplitude of motion and ω is its angular frequency. Produce the equation
of motion of the block.
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Solution

A

c

y

k1

k2

m

x

Figure 11

Let us introduce the inertial axis x in such a way that its origin coincides with
the centre of gravity of the block 1 when the system is in its equilibrium position (see
Fig. 11. Application of the Newton’s low results in the following equation of motion

mẍ = −k2x− k1x+ k2y − cẋ (1.7)

Its standard form is
ẍ+ 2ςωnẋ+ ω2nx = q sinωt (1.8)

where

ω2n =
k1 + k2

m
2ςωn =

c

m
q =

k2a

m
(1.9)
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Problem 2

r

R

1

2

Figure 12

The cylinder 1 (see Fig. 12) of mass m and radius r is plunged into a liquid
of density d. The cylindric container 2 has a radius R. Produce the formula for the
period of the vertical oscillation of the cylinder.
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Solution

r

R

x

x

G
z
V

V

1

2

Figure 13

Let us introduce the inertial axis x in such a way that its origin coincides with
the centre of gravity of the cylinder 1 when the system is in its equilibrium position
(see Fig. 13. If the cylinder is displaced from its equilibrium position by a distance
x, the hydrostatic force acting on the cylinder is reduced by

∆H = (x+ z) dgπr2 (1.10)

Since the volume V1 must be equal to the volume V2 we have

V1 = πr2x = V2 = π
¡
R2 − r2

¢
z (1.11)

Therefore

z =
r2

R2 − r2
x (1.12)

Introducing the above relationship into the formula 1.10 one can get that

∆H =

µ
x+

r2

R2 − r2
x

¶
dgπr2 = πdg

µ
R2r2

R2 − r2

¶
x (1.13)

According to the Newton’s law we have

mẍ = −dgπ
µ

R2r2

R2 − r2

¶
x (1.14)

The standard form of this equation of motion is

ẍ+ ω2nx = 0 (1.15)

where

ω2n =
dg

m
π

µ
R2r2

R2 − r2

¶
(1.16)

The period of the free oscillation of the cylinder is

Tn =
2π

ωn
=
2π

Rr

s
m (R2 − r2)

πdg
=
2

Rr

s
mπ (R2 − r2)

dg
(1.17)
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Problem 3

c
R

G
D

L

m 1

Figure 14

The disk 1 of massm and radiusR (see Fig. 14) is supported by an elastic shaft
of diameter D and length L. The elastic properties of the shaft are determined by
the shear modulus G. The disk can oscillate about the vertical axis and the damping
is modelled by the linear damper of a damping coefficient c. Produce equation of
motion of the disk
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Solution

c
R

G 

D 

L

m 1

ϕ

Figure 15

Motion of the disk is governed by the generalized Newton’s equation

Iϕ̈ = −ksϕ− cR2ϕ̇ (1.18)

where
I = mR2

2
- the moment of inertia of the disk

ks =
T
ϕ
= T

TL
JG

= JG
L
= πD4G

32L
the stiffness of the rod

Introduction of the above expressions into the equation 1.18 yields

Iϕ̈+ cR2ϕ̇+
πD4G

32L
ϕ = 0 (1.19)

or
ϕ̈+ 2ςωnϕ̇+ ω2nϕ = 0 (1.20)

where

ω2n =
πD4G

32LI
2ςωn =

cR2

I
(1.21)
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Problem 4

O
k c

l
b

a

1

m

Figure 16

The thin and uniform plate 1 of mass m (see Fig. 16) can rotate about
the horizontal axis O. The spring of stiffness k keeps it in the horizontal position.
The damping coefficient c reflects dissipation of energy of the system. Produce the
equation of motion of the plate.
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Solution

 

O
k c

l
b

a

1

m

ϕ

Figure 17

Motion of the plate along the coordinate ϕ (see Fig. 17) is govern by the
generalized Newton’s equation

Iϕ̈ =M (1.22)

The moment of inertia of the plate 1 about its axis of rotation is

I =
mb2

6
(1.23)

The moment which act on the plate due to the interaction with the spring k and the
damper c is

M = −kl2ϕ− cb2ϕ̇ (1.24)

Hence
mb2

6
ϕ̈+ kl2ϕ+ cb2ϕ̇ = 0 (1.25)

or
ϕ̈+ 2ςωnϕ̇+ ω2nϕ = 0 (1.26)

where

ω2n =
6kl2

mb2
2ςωn =

6c

m
(1.27)
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Problem 5

E,I
M
m

ω t

l

c µ

Figure 18

The electric motor of massM (see Fig. 18)is mounted on the massless beam of
length l, the second moment of inertia of its cross-section I and the Young modulus
E. The shaft of the motor has a mass m and rotates with the angular velocity ω. Its
unbalance (the distance between the axis of rotation and the shaft centre of gravity)
is µ. The damping properties of the system are modelled by the linear damping of
the damping coefficient c. Produce the equation of motion of the system.
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Problem 6

yA
0

c

k

d D

l
L

Figure 19

The wheel shown in the Fig. 19 is made of the material of a density (. It
can oscillate about the horizontal axis O. The wheel is supported by the spring of
stiffness k and the damper of the damping coefficient c. The right hand end of the
damper moves along the horizontal axis y and its motion is given by the following
equation

y = a sinωt

Produce the equation of motion of the system
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Problem 7

L
r

1

2

Figure 20

The cylinder 1 of mass m is attached to the rigid and massless rod 2 to form
the pendulum shown in the Fig. 20. Produce the formula for the period of oscillation
of the pendulum.
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Problem 8

O
k c

l
b

a

1

m

Figure 21

The thin and uniform plate 1 (see Fig. 21) of mass m can rotate about the
horizontal axis O. The spring of stiffness k keeps it in the horizontal position. The
damping coefficient c reflects dissipation of energy of the system. Produce the formula
for the natural frequency of the system.
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1.2 ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM

1.2.1 Free vibration

DEFINITION: It is said that a system performs free vibration if there are
no external forces (forces that are explicitly dependent on time) acting on this
system.

In this section, according to the above definition, it is assumed that the resul-
tant of all external forces f(t) is equal to zero. Hence, the mathematical model that
is analyzed in this section takes form

ẍ+ 2ςωnẋ+ ω2nx = 0 (1.28)

The equation 1.28 is classified as linear homogeneous ordinary differential equation of
second order. If one assume that the damping ratio ς is equal to zero, the equation
1.28 governs the free motion of the undamped system.

ẍ+ ω2nx = 0 (1.29)

Free vibration of an undamped system

The general solution of the homogeneous equation 1.29 is a linear combination of its
two particular linearly independent solutions. These solutions can be obtained by
means of the following procedure. The particular solution can be predicted in the
form 1.30.

x = eλt (1.30)

Introduction of the solution 1.30 into the equation 1.29 yields the characteristic equa-
tion

λ2 + ω2n = 0 (1.31)

This characteristic equation has two roots

λ1 = +iωn and λ2 = −iωn (1.32)

Hence, in this case, the independent particular solution are

x1 = sinωnt and x2 = cosωnt (1.33)

Their linear combination is the wanted general solution and approximates the free
vibration of the undamped system.

x = Cs sinωnt+ Cc cosωnt (1.34)

The two constants Cs and Cc should be chosen to fulfill the initial conditions which
reflect the way the free vibrations were initiated. To get an unique solution it is nec-
essary to specify the initial position and the initial velocity of the system considered.
Hence, let us assume that at the instant t = 0 the system was at the position x0 and
was forced to move with the initial velocity v0. Introduction of these initial conditions
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into the equation 1.34 results in two algebraic equation that are linear with respect
to the unknown constants Cs and Cc.

Cc = x0

Csωn = v0 (1.35)

According to 1.34, the particular solution that represents the free vibration of the
system is

x =
v0
ωn
sinωnt+ x0 cosωnt =

= C sin(ωnt+ α) (1.36)

where

C =

s
(x0)2 +

µ
v0
ωn

¶2
; α = arctan

Ã
x0
v0
ωn

!
(1.37)

For ωn = 1[1/s], x0 = 1[m] v0 = 1[m/s] and ς = 0 the free motion is shown in Fig.
22 The free motion, in the case considered is periodic.

40

-1.5

-1

-0.5

0

0.5

1

10 20 30 50

x[m]

t[s]

C

Tn

α

xo

vo

Figure 22

DEFINITION: The shortest time after which parameters of motion repeat
themselves is called period and the motion is called periodic motion.

According to this definition, since the sine function has a period equal to 2π,
we have

sin(ωn(t+ Tn) + α) = sin(ωnt+ α+ 2π) (1.38)
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Hence, the period of the undamped free vibrations is

Tn =
2π

ωn
(1.39)

Free vibration of a damped system

If the damping ratio is not equal to zero, the equation of the free motion is

ẍ+ 2ςωnẋ+ ω2nx = 0 (1.40)

Introduction of the equation 1.30 into 1.40 yields the characteristic equation

λ2 + 2ςωnλ+ ω2n = 0 (1.41)

The characteristic equation has two roots

λ1,2 =
−2ςωn ±

p
(2ςωn)2 − 4ω2n
2

= −ςωn ± ωn

p
ς2 − 1 (1.42)

The particular solution depend on category of the above roots. Three cases are
possible

Case one - underdamped vibration

If ς < 1, the characteristic equation has two complex conjugated roots and
this case is often referred to as the underdamped vibration.

λ1,2 = −ςωn ± iωn

p
1− ς2 = −ςωn ± iωd (1.43)

where
ωd = ωn

p
1− ς2 (1.44)

The particular solutions are

x1 = e−ςωnt sinωdt and x2 = e−ςωnt cosωdt (1.45)

and their linear combination is

x = e−ςωnt(Cs sinωdt+ Cc cosωdt) (1.46)

For the following initial conditions

x |t=0= x0 ẋ |t=0= v0 (1.47)

the two constants Cs and Cc are

Cs =
v0 + ςωnx0

ωd

Cc = x0 (1.48)
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Introduction of the expressions 1.48 into 1.46 produces the free motion in the following
form

x = e−ςωnt(Cs sinωdt+ Cc cosωdt) = Ce−ςωnt sin(ωdt+ α) (1.49)

where

C =

sµ
v0 + ςωnx0

ωd

¶2
+ (x0)

2; α = arctan
x0ωd

v0 + ςωnx0
; ωd = ωn

p
1− ς2

(1.50)
For ωn = 1[1/s], x0 = 1[m] v0 = 1[m/s] and ς = .1 the free motion is shown in Fig.
23In this case the motion is not periodic but the time Td (see Fig. 23) between every

-1.5

-1

-0.5

0

0.5

1

10 20 30 40 50

x[m]

t[s]

Td

Td

x(t)x(t+ Td

t
xo

vo

)

Figure 23

second zero-point is constant and it is called period of the dumped vibration. It is easy
to see from the expression 1.49 that

Td =
2π

ωd
(1.51)

DEFINITION: Natural logarithm of ratio of two displacements x(t) and
x(t+ Td) that are one period apart is called logarithmic decrement of damping
and will be denoted by δ.
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It will be shown that the logaritmic decrement is constant. Indeed

δ = ln
x (t)

x (t+ Td)
= ln

Ce−ςωnt sin(ωdt+ α)

Ce−ςωn(t+Td) sin(ωd(t+ Td) + α)
=

= ln
Ce−ςωnt sin(ωdt+ α)

Ce−ςωnte−ςωnTd sin(ωdt+ 2π + α)
= ςωnTd =

2πςωn

ωd
=

2πςωn

ωn

√
1− ς2

=

=
2πς√
1− ς2

(1.52)

This formula is frequently used for the experimental determination of the damping
ratio ς.

ς =
δp

4π2 + δ2
(1.53)

The other parameter ωn that exists in the mathematical model 1.40 can be easily
identified by measuring the period of the free motion Td. According to the formula
1.44 and 1.51

ωn =
ωd√
1− ς2

=
2π

Td
√
1− ς2

(1.54)

Case two - critically damped vibration

If ς = 1, the characteristic equation has two real and equal one to each other
roots and this case is often referred to as the critically damped vibration

λ1,2 = −ςωn (1.55)

The particular solutions are

x1 = e−ςωnt and x2 = te−ςωnt (1.56)

and their linear combination is

x = Cse
−ςωnt + Ccte

−ςωnt (1.57)

For the following initial conditions

x |t=0= x0 ẋ |t=0= v0 (1.58)

the two constants Cs and Cc are as follow

Cs = x0

Cc = v0 + x0ωn (1.59)

Introduction of the expressions 1.59 into 1.57 produces expression for the free motion
in the following form

x = e−ςωnt(x0 + t(v0 + x0ωn)) (1.60)

For ωn = 1[1/s], x0 = 1[m] v0 = 1[m/s] and ς = 1. the free motion is shown in
Fig. 24. The critical damping offers for the system the possibly faster return to its
equilibrium position.
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Case three - overdamped vibration

If ς > 1, the characteristic equation has two real roots and this case is often
referred to as the overdamped vibration.

λ1,2 = −ςωn ± ωn

p
ς2 − 1 = ωn(−ς ±

p
ς2 − 1) (1.61)

The particular solutions are

x1 = e−ωn(ς+
√
ς2−1)t and x2 = e−ωn(ς−

√
ς2−1)t (1.62)

and their linear combination is

x = e−ωnt
³
Cse

ωn
√
ς2−1)t + Cce

−ωn
√
ς2−1)t

´
(1.63)

For the following initial conditions

x |t=0= x0 ẋ |t=0= v0 (1.64)

the two constants Cs and Cc are as follow

Cs =
+ v0

ωn
+ x0(+ς +

√
ς2 − 1)

2
√
ς2 − 1

Cc =
− v0

ωn
+ x0(−ς +

√
ς2 − 1)

2
√
ς2 − 1 (1.65)

For ωn = 1[1/s], x0 = 1[m] v0 = 1[m/s] and ς = 5. the free motion is shown in Fig.
25
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1.2.2 Forced vibration
In a general case motion of a vibrating system is due to both, the initial conditions and
the exciting force. The mathematical model, according to the previous consideration,
is the linear non-homogeneous differential equation of second order.

ẍ+ 2ςωnẋ+ ω2nx = f(t) (1.66)

where

ωn =

r
k

m
; 2ςωn =

c

m
; f(t) =

Fex(t)

m
(1.67)

The general solution of this mathematical model is a superposition of the general
solution of the homogeneous equation xg and the particular solution of the non-
homogeneous equation xp.

x = xg + xp (1.68)

The general solution of the homogeneous equation has been produced in the previous
section and for the underdamped vibration it is

xg = e−ςωnt(Cs sinωdt+ Cc cosωdt) = Ce−ςωnt sin(ωdt+ α) (1.69)

To produce the particular solution of the non-homogeneous equation, let as assume
that the excitation can be approximated by a harmonic function. Such a case is
referred to as the harmonic excitation.

f(t) = q sinωt (1.70)
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In the above equation q represents the amplitude of the unit excitation and ω is the
excitation frequency. Introduction of the expression 1.70 into equation 1.66 yields

ẍ+ 2ςωnẋ+ ω2nx = q sinωt (1.71)

In this case it is easy to predict mode of the particular solution

xp = As sinωt+Ac cosωt (1.72)

where As and Ac are constant. The function 1.72 is the particular solution if and
only if it fulfils the equation 1.71 for any instant of time. Therefore, implementing it
in equation 1.71 one can get¡
(ω2n − ω2)As − 2ςωnωAc

¢
sinωt+

¡
2ςωnωAs + (ω

2
n − ω2)Ac

¢
cosωt = q sinωt (1.73)

This relationship is fulfilled for any instant of time if

(ω2n − ω2)As − 2ςωnωAc = q

2ςωnωAs + (ω
2
n − ω2)Ac = 0 (1.74)

Solution of the above equations yields the expression for the constant As and Ac

As =

¯̄̄̄
q −2ςωnω
0 (ω2n − ω2)

¯̄̄̄
¯̄̄̄
(ω2n − ω2) −2ςωnω
2ςωnω (ω2n − ω2)

¯̄̄̄ = (ω2n − ω2)q

(ω2n − ω2)2 + 4(ςωn)2ω2

Ac =

¯̄̄̄
(ω2n − ω2) q
2ςωnω 0

¯̄̄̄
¯̄̄̄
(ω2n − ω2) −2ςωnω
2ςωnω (ω2n − ω2)

¯̄̄̄ = −2(ςωn)ωq

(ω2n − ω2)2 + 4(ςωn)2ω2
(1.75)

Introduction of the expressions 1.75 into the predicted solution 1.72 yields

xp = As sinωt+Ac cosωt = A sin(ωt+ ϕ) (1.76)

where

A =
p
A2s +A2c =

qp
(ω2n − ω2)2 + 4(ςωn)2ω2

ϕ = arctan
Ac

As
= − arctan 2(ςωn)ω

ω2n − ω2

(1.77)
or

A =

q
ω2nq

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.78)

Introducing 1.69 and 1.76 into the 1.68 one can obtain the general solution of the
equation of motion 1.71 in the following form

x = Ce−ςωnt sin(ωdt+ α) +A sin(ωt+ ϕ) (1.79)
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The constants C and α should be chosen to fullfil the required initial conditions.
For the following initial conditions

x |t=0= x0 ẋ |t=0= v0 (1.80)

one can get the following set of the algebraic equations for determination of the
parameters C and α

x0 = Co sinαo +A sinϕ

v0 = −Coςωn sinαo + Coωd cosαo +Aω cosϕ (1.81)

Introduction of the solution of the equations 1.81 (Co,αo) to the general solution,
yields particular solution of the non-homogeneous equation that represents the forced
vibration of the system considered.

x = Coe
−ςωnt sin(ωdt+ αo) +A sin(ωt+ ϕ) (1.82)

This solution, for the following numerical data ς = 0.1, ωn = 1[1/s], ω = 2[1/s],
Co = 1[m], αo = 1[rd], A = 0.165205[m], ϕ = 0.126835[rd] is shown in Fig. 26
(curve c).The solution 1.82 is assembled out of two terms. First term represents an
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oscillations with frequency equal to the natural frequency of the damped system ωd.
Motion represented by this term, due to the existing damping, decays to zero (curve
a in Fig. 1.82) and determines time of the transient state of the forced vibrations.
Hence, after an usually short time, the transient state changes into the steady state
represented by the second term in equation 1.82 (curve b in Fig. 1.82)

x = A sin(ωt+ ϕ) (1.83)

This harmonic term has amplitude A determined by the formula 1.77. It does not
depend on the initial conditions and is called amplitude of the forced vibration. Mo-
tion approximated by the equation 1.83 is usually referred to as the system forced
vibration.
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Both, the exciting force f(t) = q sinωt (1.70) and the (steady state) forced
vibration x = A sin(ωt+ ϕ) (1.83) are harmonic. Therefore, they can be represented
by means of two vectors ’rotating’ with the same angular velocity ω (see Fig. 27).One

x 

A 

ω t 

ϕ

q 

Asin(   t+    ) ϕω
qsin(   t ) ω

Figure 27

can see from the above interpretation that the angular displacement ϕ is the phase
between the exciting force and the displacement it causes. Therefore ϕ is called phase
of the forced vibration.

Because the transient state, from engineering point of view play secondary
role, in the following sections the steady state forced vibration will be considered
only.

Forced response due to rotating elements - force transmitted to foundation.

x 

µ

ω t 

m     µ ω2 sin ω t x 

M 
m 

m     µ ω2 sin ω t 

M 

k c 

R 

m     µ ω2 

a) b) 

Figure 28

One of many possible excitation of vibrations is excitation caused by inertia
forces produced by moving elements. The possibly simplest case of vibration cased
by this type of excitation is shown in Fig. 28. The rotor of an electrical motor rotates
with the constant angular velocity ω. If µ represents the static imbalance of the rotor
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and m is its mass, then the rotor produces the centrifugal force

F = mµω2 (1.84)

Its component along the vertical axis x is

Fx = mµω2 sinωt (1.85)

The motor of mass M is supported by means of a beam of the stiffness k. The
damping properties are approximated by the damping coefficient c. Let us model
vibration of the system. The physical model of the problem described is shown in
Fig. 28b). Taking advantage of the earlier described method of formulation the
mathematical model we have

Mẍ = −kx− cẋ+mµω2 sinωt (1.86)

Transformation of this equation into the standard form yields

ẍ+ 2ςωnẋ+ ω2nx = q sinωt (1.87)

where

ωn =

r
k

M
2ςωn =

c

M
q =

mµω2

M
(1.88)

Hence, the steady state forced vibration are

x = A sin(ωt+ ϕ) (1.89)

where according to 1.77

A =

q
ω2nq

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.90)

or, taking into consideration 1.88

A =
m
M
µ( ω

ωn
)2q

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.91)

The ratio A
m
M
µ
, is called the magnification factor, Its magnitude and the phase ϕ as

a function of the ratio ω
ωn
for different damping factor ς is shown in Fig. 29.If the

frequency of excitation changes from zero to the value equal to the natural frequency
ωn, the amplitude of the forced vibration is growing. Its maximum depends on the
damping ratio and appears for ω > ωn. The phenomenon at which amplitude of
the forced vibration is maximum is called amplitude resonance. If the frequency of
excitation tends towards infinity, the amplitude of the forced vibration tends to m

M
µ.

For ω = ωn, regardless the damping involved, phase of the forced vibration is equal
to 90o. This phenomenon is called phase resonance. If the frequency of excitation
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tends to infinity, the phase tends to 180o. Hence the response of the system tends to
be in the anti-phase with the excitation.

The force transmitted to the foundation R, according to the physical model
shown in Fig. 28b) is

R(t) = kx+ cẋ = kA sin(ωt+ ϕ) + cAω cos(ωt+ ϕ) = A
√
k2 + c2ω2 sin(ωt+ ϕ+ δ)

(1.92)
The amplitude of the reaction is

|R| = A
√
k2 + c2ω2 = AM

p
ω4n + 4ς

2ω2nω
2 =

= mµω2

q
1 + 4ς2( ω

ωn
)2q

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

The amplification ratio |R|
mµω2

of the reaction as a function of the ratio ω
ωn
is shown in

Fig. 30.For the frequency of excitation ω < 1.4ωn the force transmitted to foundation
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is greater then the centrifugal force itself with its maximum close to frequency ωn.
For ω > 1.4ωn this reaction is smaller then the excitation force and tends to zero
when the frequency of excitation approaches infinity.

Forced response due to the kinematic excitation - vibration isolation

The physical model of a system with the kinematic excitation is shown in Fig. 31b).
Motion of the point B along the axis y causes vibration of the blockM . This physical
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model can be used to analyze vibration of a bus caused by the roughness of the
surface of the road shown in Fig. 31a). The stiffness k of the spring and the damping
coefficient c represent the dynamic properties of the bus shock-absorbers. The block
of massM stands for the body of the bus. If the surface can be approximated by the
sine-wave of the amplitude a and length L and the bus is travelling with the constant
velocity v, the period of the harmonic excitation is

T =
L

v
(1.93)

Hence, the frequency of excitation, according to 1.39 is

ω =
2πv

L
(1.94)

and the motion of the point B along the axis y can approximated as follows

y = a sinωt (1.95)

The equation of motion of the bus is

Mẍ = −kx− cẋ+ ky + cẏ (1.96)

Introduction of 1.95 yields

Mẍ+ cẋ+ kx = ka sinωt+ caω cosωt

or
ẍ+ 2ςωnẋ+ ω2nx = ω2na sinωt+ 2ςωnωa cosωt = q sin(ωt+ α) (1.97)

where

q = aω2n

r
1 + 4ς2(

ω

ωn
)2 (1.98)
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Without any harm to the generality of the considerations one can neglect the phase
α and adopt the mathematical model in the following form

ẍ+ 2ςωnẋ+ ω2nx = q sinωt (1.99)

Motion of the block along axis x is governed by the equation 1.83

x = A sin(ωt+ ϕ)

where

A =

q
ω2nq

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.100)

Introduction of equation 1.98 gives

A =
a
q
1 + 4ς2( ω

ωn
)2q

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.101)

The magnifying factor A
a
and the phase ϕ as a function of ω

ωn
is shown in Fig. 32.

For ω < 1.4ωn it is possible to arrange for the bus to have vibration smaller than the
amplitude of the kinematic excitation

The expression for the reaction force transmitted to the foundation is

R = kx+ cẋ− ky − cẏ = kA sin(ωt+ ϕ) + cωA cos(ωt+ ϕ)− ka sinωt− cωa cosωt

= |R| sin(ωt+ γ) (1.102)

Problem of minimizing the reaction force R (e.g. 1.92) or the amplitude A (e.g..
1.101) is called vibration isolation.
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1.2.3 Problems
Free vibrations

Problem 9

1

2

H

k c

Figure 33

The carriage 1 of the lift shown in Fig. 33 operates between floors of a building.
The distance between the highest and the lowest floor is H = 30m. The average mass
of the carriage is m = 500kg. To attenuate the impact between the carriage and the
basement in the case the rope 3 is broken, the shock absorber 2 is to be installed.

Calculate the stiffness k and the damping coefficient c of the shock-absorber
which assure that the deceleration during the impact is smaller then 200m/s2.
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Solution
In the worst case scenario, the lift is at the level H when the rope brakes.

H

k c

x

x

mg

Figure 34

Due to the gravity force the lift is falling down with the initial velocity equal to zero.
Equation of motion of the lift is

mẍ = mg (1.103)

By double side by side integrating of the above equation one can get

x = A+Bt+
g

2
t2 (1.104)

Introduction of the following initial conditions

x |t=0= 0 ẋ |t=0= 0
yields A = 0 and B = 0 and results in the following equation of motion

x =
g

2
t2 (1.105)

Hence, the time the lift reaches the shock-absorber is

to =

s
2H

g
(1.106)

Since
v = ẋ = gt (1.107)
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the velocity of the lift at the time of the impact with the shock-absorber is

vo = ẋ |t=to=
p
2Hg (1.108)

To analyze the motion of the lift after impact let us introduce the inertial axis y
in such a way that its origin coincides with the upper end of the shock-absorber at
the instant of impact (see Fig. 35).Since at the instant of impact the spring k is

H

k c

x

y
mg

y

Figure 35

uncompressed, the equation of motion after the lift has reached the shock-absorber is

mÿ + cẏ + ky = mg (1.109)

or in the standardized form

ÿ + 2ςωnẏ + ω2ny = g (1.110)

where

ωn =

r
k

m
; 2ςωn =

c

m
(1.111)

It is easy to see that in the case considered the particular solution of the non-
homogeneous equation is

yp =
g

ω2n
(1.112)

The best performance of the shock-absorber is expected if the damping is critical
(ς = 1). In this case, there exists one double root and the general solution of the
homogeneous equation is

yg = C1e
−ωnt + C2te

−ωnt (1.113)
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Therefore the general solution of the non-homogeneous equation as the sum of yp and
yg is

y = C1e
−ωnt + C2te

−ωnt +
g

ω2n
(1.114)

This equation has to fullfil the following initial conditions

y |t=0= 0 ẏ |t=0= vo (1.115)

Introduction of these initial conditions into the equation 1.113 yields

C1 = − g

ω2n
C2 = vo − g

ωn
(1.116)

and results in the following equation of motion

y =

µ
− g

ω2n

¶
e−ωnt +

µ
vo − g

ωn

¶
te−ωnt +

g

ω2n

=
g

ω2n

¡
1− e−ωnt

¢
+

µ
vo − g

ωn

¶
te−ωnt = D

¡
1− e−ωnt

¢
+Ete−ωnt (1.117)

where
D =

g

ω2n
E = vo − g

ωn
(1.118)

Double differentiation of the function 1.117 yields acceleration during the impact

ÿ =
¡−Dω2n − 2Eωn

¢
e−ωnt +Eω2nte

−ωnt (1.119)

By inspection of the function 1.118, one can see that the maximum of the deceleration
occurs for time t = 0. Hence the maximum of deceleration is

amax = ÿ |t=0=
¯̄−Dω2n − 2Eωn

¯̄
(1.120)

If
vo >

g

ωn
(1.121)

both constants E and D are positive. Hence

amax = Dω2n + 2Eωn = g + 2voωn − 2g = 2voωn − g (1.122)

This deceleration has to be smaller then the allowed deceleration aa = 200ms−2.

2voωn − g < aa (1.123)

It follows
ωn <

aa + g

2
√
2Hg

=
200 + 10

2
√
2 · 30 · 10 = 4.28s

−1 (1.124)

Since ωn =
q

k
m
, the stiffness of the shock-absorber is

k = ω2nm = 4.282 · 500 = 9160N/m (1.125)
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and the damping coefficient

c = 2ςωnm = 2 · 1 · 4.28 · 500 = 4280Ns/m (1.126)

Our computation can be accepted only if the inequality 1.121 is fullfil. Indeed

vo =
p
2Hg =

√
2 · 30 · 10 = 24.5 > g

ωn
=

10

4.28
= 2.4m/s (1.127)

The displacement of the lift, its velocity and acceleration during the impact as a
function of time is shown in Fig. 36
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Figure 36
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Problem 10

The power winch W was mounted on the truss T as shown in Fig. 37a) To

T

R

W k

m

c

x

a) b)

Figure 37

analyze the vibrations of the power winch the installation was modelled by the one
degree of freedom physical model shown in Fig. 38b). In this figure the equivalent
mass, stiffness and damping coefficient are denoted bym, k and c respectively. Origin
of the axis x coincides with the centre of gravity of the weight m when the system
rests in its equilibrium position.

To identify the unknown parametersm, k, and c, the following experiment was
carried out. The winch was loaded with the weight equal toM1 = 1000kg as shown in
Fig. 38. Then the load was released allowing the installation to perform the vertical

T

R

W

M
l

L

Figure 38

oscillations in x direction. Record of those oscillations is presented in Fig. 39.
Calculate the parameters m, k, and c.
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431 2

time [s]

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

 x[m]

Figure 39

Answer
m = 7000kg; k = 3000000Nm−1; c = 15000Nsm−1



ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM 52

Problem 11

T

R

W k

m

c

x

a) b)

Figure 40

The winch W shown in Fig. 40 is modelled as a system with one degree of
freedom of mass m stiffness k and the damping coefficient c. The winch is lifting the
block of mass M with the constant velocity vo (see Fig. 41).Assuming that the rope

T

R

W

M

Figure 41

R is not extendible produce expression for the tension in the rope R before and after
the block will lose contact with the floor.
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Solution

Tension in the rope R before the contact is lost

In the first stage of lifting the block M , it stays motionlessly at the floor
whereas the lift itself is going down with respect to the inertial axis x with the
constant velocity vo. The tension T in the rope R varies between 0 and Mg.

0 < T 0Mg (1.128)

If origin of the inertial axis x coincides with the gravity centre when the unloaded
winch is at its equilibrium, the equation of motion of the winch is

mẍ+ cẋ+ kx = −T (1.129)

In the above equation ẍ = 0 (the winch is moving with the constant velocity vo),
ẋ = −vo and x = −vot. Hence

−T = c(−vo) + k(−vot) (1.130)

The equation 1.130 governs motion of the winch till the tension T will reach value
Mg. Therefore the equation 1.130 allows the time of separation ts to be obtained.

ts =
Mg − cvo

kvo
(1.131)

At the instant of separation the winch will be at the position determined by the
following formula

xs = −vots = −Mg − cvo
k

(1.132)

If Mg < cvo then xs = ts = 0.
If Mg > cvo

T = cvo + kvot for 0 < t < ts (1.133)

Tension in the rope R after the contact of the weight with the floor is lost

Without any harm to the generality of the further consideration one may
assume that the time corresponding to the instant of separation is equal to 0.

For t > 0, the equation of motion of the winch and the block (see Fig. 42) are
as following

mẍ+ cẋ+ kx = −T
Mẍb = T −Mg (1.134)

Since the rope R is not extendible, the instantaneous length of the rope L is

L = Lo − vot (1.135)
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k

m

c

x

T

T

Mg

x
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Figure 42

Where Lo stands for the initial length of the rope (the lenght the rope had at the
instance t = 0). Taking into account that

L = x− xb (1.136)

we have
xb = x− L = x− Lo + vot (1.137)

Introduction of the equation 1.137 into 1.134 yields

mẍ+ cẋ+ kx = −T
Mẍ = T −Mg (1.138)

Elimination of the unknown tension force allows the equation of motion of the winch
to be formulated

(m+M)ẍ+ cẋ+ kx = −Mg (1.139)

The standardized form is as following

ẍ+ 2ςωnẋ+ ω2nx = q (1.140)

where

ωn =

r
k

m+M
; 2ςωn =

c

m+M
; q = − Mg

m+M
(1.141)

The particular solution of the non-homogeneous equation can be predicted as a con-
stant magnitude A. Hence

ω2nA = q; A =
q

ω2n
(1.142)
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The general solution of the mathematical model 1.140 is

x = e−ςωnt(Cs sinωdt+ Cc cosωdt) +A (1.143)

where
ωd = ωn

p
1− ς2 (1.144)

This solution has to fulfill the following initial conditions

for t = 0 x = xs ẋ = −vo (1.145)

Introduction of these initial conditions into the solution 1.143 yields the following
expressions for the constants Cs and Cc

Cs =
−vo + ςωn(xs −A)

ωd
Cc = xs −A (1.146)

Hence,

x = e−ςωnt
µ−vo + ςωn(xs −A)

ωd
sinωdt+ (xs −A) cosωdt

¶
+A (1.147)

The time history diagram of the above function is shown in Fig.43 The tension is

x

txs

Td

xmax

A

O

Figure 43

determined by the equation 1.138

T =Mẍ+Mg (1.148)
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Double differentiation of the function 1.147 yields the wanted tension as a function
of time

T = Mg +Me−ςωnt
¡
Cs(ςωn)

2 + 2Ccςωnωd − Csω
2
d

¢
sinωdt

+Me−ςωnt
¡
Cc(ςωn)

2 − 2Csςωnωd + Ccω
2
d

¢
cosωdt (1.149)
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Forced vibration

Problem 12

E,I
M
m

ω t

l

c µ

B

A

Figure 44

The electric motor of mass M (see Fig. 44) is mounted on the massless beam
of length l, the second moment of inertia of its cross-section I and Young modulus E.
Shaft of the motor, of mass m, rotates with the constant angular velocity ω and its
unbalance (distance between the axis of rotation and the shaft centre of gravity) is
µ. The damping properties of the system are modelled by the linear damping of the
damping coefficient c. Produce expression for the amplitude of the forced vibration
of the motor as well as the interaction forces transmitted to the foundation at the
points A and B.
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Solution

E,I
M
m

ω t

l

c µ

x
m ωµ 2

A

B

Figure 45

Application of the Newton’s approach to the system shown in Fig. 45 results
in the following differential equations of motion.

Mẍ = −kx− cẋ+mµω2 sinωt (1.150)

where k stands for the stiffness of the beam EI.

k =
48EI

l3
(1.151)

Its standardized form is
ẍ+ 2ςωnẋ+ ω2nx = q sinωt (1.152)

where

ωn =

r
k

M
2ςωn =

c

m+M
q =

mµω2

M
(1.153)

The particular solution of the equation 1.152

x = A sin (ωt+ ϕ) (1.154)

where

A =

q
ω2nq

(1− ( ω
ωn
)2)2 + 4ς2( ω

ωn
)2

ϕ = − arctan 2ς ω
ωn

1− ( ω
ωn
)2

(1.155)

represents the forced vibrations of the system. In the above formula A stands for the
amplitude of the forced vibrations of the motor. The interaction force at the point
A can be determined from equilibrium of forces acting on the beam at an arbitrarily
chosen position x (see Fig 46).
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E,I

0.5k
l

x

x

x0.5kx

kx

A
D

Figure 46

The force needed to displace the point D by x is equal to kx. Hence, the
reaction at the point A is

RA = −0.5kx = −0.5kA sin (ωt+ ϕ) (1.156)

B

x

x

c

c

D

xc

x

Figure 47

To move the point D (see Fig. 47) with the velocity ẋ the force cẋ is required.
Hence, from the equilibrium of the damper one can see that the reaction at the point
B is

RB = −cẋ = −cωA sin (ωt+ ϕ)



ANALYSIS OF ONE-DEGREE-OF-FREEDOM SYSTEM 60

Problem 13

x

z

y

z=x-y

1

2

3

4

5

Figure 48

Figure 48 presents a seismic transducer. Its base 2 is attached to the vibrating
object 1. The seismic weight 3 of massm is supported by the spring 4 of stiffness k and
the damper 5 of the damping coefficient c.This transducer records the displacement

z = x− y (1.157)

where y is the absolute displacement of the vibration object 1 and x is the absolute
displacement of the seismic weight 3. Upon assuming that the object 1 performs a
harmonic motion

y = a sinωt (1.158)

derive the formula for the amplification coefficient κ of the amplitude of vibration of
the object 1 of this transducer ( κ = amplitude of z

amplitude of y ) as a function of the non-dimensional
frequency ω

ωn
.
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Solution
The equation of motion of the system shown in Fig. 48 is

mẍ+ cẋ+ kx = cẏ + ky (1.159)

Its standardize form is

ẍ+ 2ςωnẋ+ ω2nx = aqc cosωt+ aqs sinωt (1.160)

where

ωn =

r
k

m
2ςωn =

c

m
qc =

c

m
ω qs =

k

m
(1.161)

Simplification of the right side of the above equation yields

ẍ+ 2ςωnẋ+ ω2nx = aq sin (ωt+ α) (1.162)

where

q =
p
q2c + q2s = ω2n

s
4ς2
µ

ω

ωn

¶2
+ 1 α = arctan

qc
qs
= arctan 2ς

ω

ωn
(1.163)

According to equation 1.76 (page 35) the particular solution of the equation 1.162 is

xp = aA sin(ωt+ α+ ϕ) (1.164)

where

A =

r
4ς2
³

ω
ωn

´2
+ 1sµ

1−
³

ω
ωn

´2¶2
+ 4ς2

³
ω
ωn

´2 ϕ = − arctan 2ς ω
ωn

1−
³

ω
ωn

´2 (1.165)

Hence the record of the transducer is

z = x− y = aA sin(ωt+ α+ ϕ)− a sinωt =

= aA cos (α+ ϕ) sinωt+ aA sin (α+ ϕ) cosωt− a sinωt =

= (aA cos (α+ ϕ)− a) sinωt+ aA sin (α+ ϕ) cosωt (1.166)

The amplitude of this record is

ampz =

q
(aA cos (α+ ϕ)− a)2 + (aA sin (α+ ϕ))2 = a

p
A2 + 1− 2A cos(α+ ϕ)

(1.167)
Therefore, the coefficient of amplification is

κ =
ampz
ampy

=
p
A2 + 1− 2A cos(α+ ϕ) (1.168)

The diagram presented in Fig.49 shows this amplification coefficient κ as a function
of the ratio ω

ωn
.If the coefficient of amplification κ is equal to one, the record of the
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amplitude of vibration (ampz) is equal to the amplitude of vibration of the object
(ampy = a). It almost happends, as one can see from the diagram 49, if the frequency
ω of the recorded vibrations is twice greater than the natural frequency ωn of the
transducer and the damping ratio ς is 0.25.

0
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3

4

5

6

1 2 3 4 5ω/ nω

κ

ζ=0.1

ζ=0.25

ζ=0.5

Figure 49
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Problem 14

O   
A B

 
 
 

α 

x a 

b

c

d

k 
G

C

Figure 50

The physical model of a vibrating table is shown in Fig. 50. It can be con-
sidered as a rigid body of the mass m and the moment of inertia about axis through
its centre of gravity IG. It is supported with by means of the spring of the stiffness
k and the damper of the damping coefficient c. The motion of the lower end of the
spring with respect to the absolute coordinate x can be approximated as follows

x = X cosωt

where X stands for the amplitude of the oscillations of the point C and ω stands for
the frequency of these oscillations.

Produce:
1. the differential equation of motion of the vibrating table and present it in

the standard form
2. the expression for the amplitude of the forced vibrations of the table caused

by the motion of the point C
3. the expression for the interaction force at the point A
4. the expression for the driving force that has to be applied to the point C
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Problem 15
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Figure 51

Two uniform rods (1 and 2), each of length L and massm, were joined together
to form the pendulum whose physical model is depicted in Fig. 51. The pendulum
performs small oscillations α about the axis through the point A. At the point B it
is supported by a spring of stiffness k and a damper of damping coefficient c. The
point C of the damper is driven along the axis Y and its motion is approximated by
the following function

Y = A sinωt

Produce:
1. The expression for the position xG of the center of gravity G of the pendulum

Answer:
xG =

3
4
L− a

2. The expression for the moment of inertia of the pendulum about the axis through
the point A.

Answer:
IA =

17
12
mL2 + 2maH2− 3mLa

3. The differential equation of motion of the pendulum
Answer:

α̈+ 2ζωnα̇+ ω2nα = q cosωt
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where: 2ζωn =
ca2

IA
; ω2n =

2mgxG+ka
2

IA
q = Aωca

IA
4. The expression for the amplitude of the forced vibrations of the pendulum

Answer:
Aα =

q

ω2n

1−( ω
ωn
)
2 2

+4ζ2( ω
ωn
)
2

5. The driving force that must be applied to the point C to assure the assumed
motion .
D = c(Aω cosωt− aAα cos(ωt+ ϕ)) ϕ = − arctan 2ζ ω

ωn

1−( ω
ωn
)
2



Chapter 2

MECHANICAL VIBRATION OF MULTI-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

Since in the nature massless or rigid elements do not exist, therefore each of the
particle the real element is made of can moves independently. It follows that to
determine its position with respect to the inertial space one has to introduce infinite
number of coordinates. Hence, according to the previously introduce definition, the
number of degrees of freedom of each real element is equal to infinity. But in many
vibration problems, with acceptable accuracy, the real elements can be represented
by a limited number of rigid elements connected to each other by means of massless
elements representing the elastic and damping properties. This process is called
discretization and the final result of this process is called multi-degree-of-freedom
system. In this chapter it will be assumed that forces produced by these massless

mi

ki ci

mj

xi
kij

cij

xj

y (t)
i

Figure 1

elements (springs and dampers) are linear functions of displacements and velocities
respectively.

2.1 MODELLING

2.1.1 Physical model
Fig. 1 shows part of a multi-degree-of-freedom system. Usually, to describe motion of
such a system a set of local generalized coordinates is introduced. These coordinates
(xi, xj, yi(t)) are motionless with respect to a global (inertial) system of coordinates
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(not shown in the Fig. 1). The coordinate yi(t) is not independent (is an explicit
function of time) whereas the coordinates xi, and xj are independent and their number
determines the number of degree of freedom of the system. Origin of each coordinate
coincides with the centre of gravity of individual bodies when the whole system is at
its equilibrium position. For this equilibrium position all the static forces acting on
individual bodies produces the resultant force equal to zero.

2.1.2 Mathematical model
It will be shown in this section that the equation of motion of the multi-degree of
freedom linear system has the following form

mẍ+cẋ+kx=F(t)

where
m - is the inertia matrix
c - is the damping matrix
k- is the stiffness matrix
F - is the external excitation matrix
x- is the displacement matrix
There are many methods that allow the mathematical model to be formulated.

In the following sections a few of them are presented.

Newton-Euler method of formulation of the mathematical model

To develop the equations of motion of the system described, one may utilize the
Newton’s or Euler’s equations. Since in case considered the body of massmi performs
a plane motion hence the Newton’s equations may be used.

miẍi = F (2.1)

If the system stays at its equilibrium position, as it was mention earlier, the resultant
of all static forces is equal zero. Therefore, the force F must contains forces due to
the displacement of the system from its equilibrium position only. To figure these
forces out let us move the mass mi out of its equilibrium position by the displacement
xi. The configuration a) shown in the figure below is achieved.
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a)
xi 6= 0
xj = 0
yi = 0
ẋi = 0
ẋj = 0
ẏi = 0

b)
xi = 0
xj 6= 0
yi = 0
ẋi = 0
ẋj = 0
ẏi = 0

c)
xi = 0
xj = 0
yi 6= 0
ẋi = 0
ẋj = 0
ẏi = 0

d)
xi = 0
xj = 0
yi = 0
ẋi 6= 0
ẋj = 0
ẏi = 0

e)
xi = 0
xj = 0
yi = 0
ẋi = 0
ẋj 6= 0
ẏi = 0

f)
xi = 0
xj = 0
yi = 0
ẋi = 0
ẋj = 0
ẏi 6= 0
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cij i- x

ci i- x
mi

ki
ci

mj

xi

kij cij
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i

yj

miẍi = −kixi − kijxi +kijxj +kiyi(t) −ciẋi − cijẋi +cijẋj +0
(2.2)

Due to this displacement there are two forces kixi and kijxi acting on the considered
mass mi. Both of them must be taken with sign ’-’ because the positive displacement
xi causes forces opposite to the positive direction of axis xi. Similar consideration
carried out for the displacements along the axis xj (configuration b)) and axis yi (
configuration c)) results in the term +kijxj. and +kiyi(t) respectively. Up to now it
has been assumed that the velocities of the system along all coordinates are equal
to zero and because of this the dampers do not produce any force. The last three
configurations (d, e, and f) allow to take these forces into account. Due to motion of
the system along the coordinate xi with velocity ẋi two additional forces are created
by the dampers ci and cij. they are −ciẋi and −cijẋi. Both of them are caused by
positive velocity and have sense opposite to the positive sense of axis xi. Therefore
they have to be taken with the sign ’-’. The forces caused by motion along the axis
xj (configuration e)) and axis yi ( configuration f)) results in the term +cijẋj. and 0
respectively. Since the system is linear, one can add all this forces together to obtain

miẍi = −kixi − kijxi + kijxj + kiyi(t)− ciẋi − cijẋi + cijẋj (2.3)

After standardization we have the final form of equation of motion of the mass mi.

miẍi + (ci + cij)ẋi − cijẋj + (ki + kij)xi − kijxj = kiyi(t) (2.4)

To accomplished the mathematical model, one has to carry out similar consideration
for each mass involved in the system. As a result of these consideration we are getting
set of differential equation containing as many equations as the number of degree of
freedom.
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Lagrange method of formulation of the mathematical model

The same set of equation of motion one can get by utilization of the Lagrange’s
equations

d

dt
(
∂

∂q̇m
T )− ∂

∂qm
T +

∂V

∂qm
= Qm m = 1, 2, ....M (2.5)

where
T - is the system kinetic energy function
V - stands for the potential energy function
Qm - is the generalized force along the generalized coordinate qm
The kinetic energy function of the system considered is equal to sum of the

kinetic energy of the individual rigid bodies the system is made of. Hence

T =
IX

i=1

⎛⎝1
2
miv

2
i +

1

2

£
ωix ωiy ωiz

¤⎡⎣ Iix 0 0
0 Iiy 0
0 0 Iiz

⎤⎦⎡⎣ ωix

ωiy

ωiz

⎤⎦⎞⎠ (2.6)

where
mi - mass of the rigid body
vi - absolute velocity of the centre of gravity of the body
ωix,ωiy,ωiz, - components of the absolute angular velocity of the body
Iix, Iiy, Iiz - The principal moments of inertia of the body about axes through

its centre of gravity
Potential energy function V for the gravity force acting on the link i shown in Fig. 2
is

Vi = migrGiZ (2.7)

Z

X

YO

rG

i

Gi

i

rGiZ

Figure 2

Potential energy for the spring s of stiffness ks and uncompressed length ls
(see Fig. 3) is

Vs =
1

2
ks(|rA − rB|− ls)

2 (2.8)
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Figure 3

Potential energy function for all conservative forces acting on the system is

V =
IX

i=1

Vi +
SX
s=1

Vs (2.9)

In a general case the damping forces should be classified as non-conservative ones
and, as such, should be included in the generalized force Qm. It must be remembered
that the Lagrange’s equations yield, in general case, a non-linear mathematical model.
Therefore, before application of the developed in this chapter methods of analysis, the
linearization process must be carried out. The following formula allows for any non-
linear multi-variable function to be linearized in vicinity of the system equilibrium
position qo1, ...q

o
m, ...q

o
M

f(q1, ...qm, ...qM , q̇1, ...q̇m, ...q̇M) = f(qo1, ...q
o
m, ...q

o
M , 0, ...0, ...0)+

+
PM

m=1
∂f
∂qm

(qo1, ...q
o
m, ...q

o
M , 0, ...0, ...0)∆qm +

PM
m=1

∂f
∂q̇m

(qo1, ...q
o
m, ...q

o
M , 0, ...0, ...0)∆q̇m

(2.10)
In the case of the system shown in Fig. 1 the kinetic energy function is

T =
1

2
miẋ

2
i +

1

2
mjẋ

2
j + · · ·· (2.11)

Dots in the above equation represents this part of the kinetic energy function that
does not depend on the generalized coordinate xi.

If the system takes an arbitral position that is shown in Fig. 4, elongation of
the springs ki and kij are respectively

∆li = xi − yi ∆lij = xj − xi (2.12)
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Therefore, the potential energy function is

V =
1

2
ki(xi − yi)

2 +
1

2
kij(xj − xi)

2 + · · ·· (2.13)

Again, dots stands for this part of the potential energy function that does not depend
on the generalized coordinate xi. It should be noted that the above potential energy
function represents increment of the potential energy of the springs due to the dis-
placement of the system from its equilibrium position. Therefore the above function
does not include the potential energy due to the static deflection of the springs. It
follows that the conservative forces due to the static deflections can not be produced
from this potential energy function. They, together with the gravity forces, produce
resultant equal to zero. Hence, if the potential energy due to the static deflections is
not included in the function 2.13 the potential energy due to gravitation must not be
included in the function 2.13 either. If the potential energy due to the static deflec-
tions is included in the function 2.13 the potential energy due to gravitation must be
included in the function 2.13 too.

Generally, the force produced by the dampers is included in the generalized
force Qm. But, very often, for convenience, a damping function (dissipation function)
D is introduced into the Lagrange’s equation to produce the damping forces. The
function D does not represent the dissipation energy but has such a property that its
partial derivative produces the damping forces. The damping function is created by
analogy to the creation of the potential energy function. The stiffness k is replaced
by the damping coefficient c and the generalized displacements are replaced by the
generalized velocities. Hence, in the considered case, since the lower end of the damper
is motionless, the damping function is

D =
1

2
ci(ẋi)

2 +
1

2
cij(ẋj − ẋi)

2 + · · ·· (2.14)

The Lagrange’s equation with the damping function takes form

d

dt
(
∂

∂q̇m
T )− ∂

∂qm
T +

∂V

∂qm
+

∂D

∂q̇m
= Qm m = 1, 2, ....M (2.15)
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Introduction of the equations 2.11, 2.13 and 2.14 into equation 2.15 yields the equation
of the motion of the mass mi.

miẍi + (ci + cij)ẋi − cijẋj + (ki + kij)xi − kijxj = kiyi(t) (2.16)

The influence coefficient method

mj

mi

Fj xj

x i

x ij

Figure 5

Let us consider the flexible structure shown in Fig. 5. Let us assume that the masses
mi and mj can move along the coordinate xi and xj respectively. Let us apply to this
system a static force Fj along the coordinate xj. Let xij be the displacement of the
system along the coordinate xi caused by the force Fj.

DEFINITION: The ratio
δij =

xij
Fj

(2.17)

is called the influence coefficient

It can be easily proved (see Maxwell’s reciprocity theorem) that for any structure

δij = δji (2.18)

If one apply forces along all I generalized coordinates xi along which the system
is allowed to move, the displacement along the i − th coordinate, according to the
superposition principle, is.

xi =
IX

j=1

δijFj i = 1, 2, ......I (2.19)

These linear relationships can be written in the matrix form

x = δF (2.20)
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The inverse transformation permits to produce forces that have to act on the system
along the individual coordinates if the system is at an arbitrarily chosen position x.

F = δ−1x (2.21)

The inverse matrix δ−1 is called stiffness matrix and will be denoted by k.

k = δ−1 (2.22)

Hence according to equation 2.21 is

Fi =
IX

j=1

kijxj (2.23)

If the system considered moves and its instantaneous position is determined by the
vector x (x1, ....xj, ...xJ) the force that acts on the particle mi is

fi = −Fi = −
IX

j=1

kijxj (2.24)

Hence, application of the third Newton’s law to the particle i yields the equation of
its motion in the following form

miẍi +
IX

j=1

kijxj = 0 (2.25)
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2.1.3 Problems
Problem 16

l

12

R

Figure 6

The disk 1 of radius R, and mass m is attached to the massless beam 2 of
radius r, length l and the Young modulus E as shown in Fig. 6 Develop equations of
motion of this system.
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Solution.

l

12

R

y

ϕy

z

Fd

Md

Figure 7

The motion of the disk shown in Fig. 7 is governed by Newton’s equations

mÿ = Fd

Iϕ̈y = Md (2.26)

In the above mathematical model
I = 1

4
mR2 - moment of inertia of the disk about axis x

Fd,Md - forces acting on the disk due to its interaction with the beam
The interaction forces Fd and Md can be expressed as a function of the dis-

placements y and ϕy by means of the influence coefficient method.

l

2

z

y

y
ϕy

M
Fs

s

Figure 8

If the beam is loaded with force Fs (see Fig. 8), the corresponding displace-
ments y and ϕy are

y =
l3

3EJ
Fs ϕy =

l2

2EJ
Fs (2.27)

If the beam is loaded with force Ms (see Fig. 8), the corresponding displacements y
and ϕy are

y =
l2

2EJ
Ms, ϕy =

l

EJ
Ms (2.28)
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Hence the total displacement along coordinates y and ϕy are

y =
l3

3EJ
Fs +

l2

2EJ
Ms

ϕy =
l2

2EJ
Fs +

l

EJ
Ms (2.29)

or in matrix form ∙
y
ϕy

¸
=

∙
l3

3EJ
l2

2EJ
l2

2EJ
l

EJ

¸ ∙
Fs

Ms

¸
(2.30)

where

J =
π r4

4
(2.31)

The inverse transformation yields the wanted forces as function of the displacements∙
Fs

Ms

¸
=

∙
l3

3EJ
l2

2EJ
l2

2EJ
l

EJ

¸−1 ∙
y
ϕy

¸
=

∙
k11 k12
k21 k22

¸ ∙
y
ϕy

¸
(2.32)

Since, according to the second Newton’s law∙
Fd

Md

¸
= −

∙
Fs

Ms

¸
(2.33)

the equation of motion takes the following form∙
m 0
0 I

¸ ∙
ÿ
ϕ̈y

¸
= −

∙
k11 k12
k21 k22

¸ ∙
y
ϕy

¸
(2.34)

Hence, the final mathematical model of the system considered is

mẍ+ kx = 0 (2.35)

where

m =

∙
m 0
0 I

¸
; k =

∙
k11 k12
k21 k22

¸
; x =

∙
y
ϕy

¸
(2.36)
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Problem 17

k

G

k1 l1
2l2

Figure 9

A rigid beam of mass m and the moments of inertia I about axis through
its centre of gravity G is supported by massless springs k1, and as shown in Fig. 9.
Produce equations of motion of the system.
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Solution.

k

G

y

1 l1 l2 k2

y

ϕ
y =y+ϕ l22ϕ l11

O

F

M

y =y-

Figure 10

The system has two degree of freedom. Let us then introduce the two coordi-
nates y and ϕ as shown in Fig. 10.

The force F and the momentM that act on the beam due to its motion along
coordinates y and ϕ are

F = −y1k1 − y2k2 = −(y − ϕl1)k1 − (y + ϕl2)k2

= −[(k1 + k2)y + (k2l2 − k1l1)ϕ]

M = +y1k1l1 − y2k2l2 = +(y − ϕl1)k1l1 − (y + ϕl2)k2l2

= −[(k2l2 − k1l1)y + (k1l
2
1 + yk2l

2
2)ϕ (2.37)

Hence, the generalized Newton’s equations yield

mÿ = F = −[(k11 + k2)y + (k2l2 − k1l1)ϕ]

Iϕ̈ = M = −[(k2l2 − k1l1)y + (k1l
2
1 + yk2l

2
2)ϕ (2.38)

The matrix form of the system equations of motion is

mẍ+ kx = 0 (2.39)

where

m =

∙
m 0
0 I

¸
; k =

∙
k1 + k2 k2l2 − k1l1
k2l2 − k1l1 k1l

2
1 + k2l

2
2

¸
; x =

∙
y
ϕ

¸
(2.40)
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Problem 18

1

2

k k Rr3
4

A

Figure 11

The link 1 of a mass m1, shown in Fig. 11), can move along the horizontal
slide and is supported by two springs 3 each of stiffness k. The ball 2 of mass m2

and a radius r and the massless rod 4 form a rigid body. This body is hinged to the
link 1 at the point A. All motion is in the vertical plane. Use Lagrange’s approach
to derive equations of small vibrations of the system about its equilibrium position.
I = 2

5
m2r

2 – moment of inertia of the ball about axis through its centre of gravity.
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Solution

1

2

k

k

Rr3
x

y

x

o

G

rG

ϕ

Figure 12

The system has two degree of freedom and the two generalized coordinates x
and ϕ are shown in Fig. 12. The kinetic energy of the system T is equal to the sum
of the kinetic energy of the link 1 T1 and the link 2 T2.

T = T1 + T2 =
1

2
m1ẋ

2 +
1

2
m2v

2
G +

1

2
Iϕ̇2 (2.41)

The absolute velocity of the centre of gravity of the ball vG can be obtained by
differentiation of its absolute position vector. According to Fig .12, this position
vector is

rG = i(x+R sinϕ) + j(−R cosϕ) (2.42)

Hence
vG = ṙG = i(ẋ+Rϕ̇ cosϕ) + j(Rϕ̇ sinϕ) (2.43)

The required squared magnitude of this velocity is

v2G = (ẋ+Rϕ̇ cosϕ)2 + (Rϕ̇ sinϕ)2 = ẋ2 + 2ẋRϕ̇ cosϕ+R2ϕ̇2 (2.44)

Introduction of Eq. 2.44 into Eq. 2.41 yields the kinetic energy function of the system
as a function of the generalized coordinates x and ϕ.

T =
1

2
m1ẋ

2 +
1

2
m2(ẋ

2 + 2ẋRϕ̇ cosϕ+R2ϕ̇2) +
1

2
Iϕ̇2

=
1

2
(m1 +m2)ẋ

2 +m2Rẋϕ̇ cosϕ+
1

2
(m2R

2 + I)ϕ̇2 (2.45)

The potential energy function is due the energy stored in the springs and the energy
due to gravitation.

V = 2
1

2
kx2 −m2gR cosϕ (2.46)
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In the case considered, the Lagrange’s equations can be adopted in the following form

d

dt

µ
∂T

∂ẋ

¶
− ∂T

∂x
+

∂V

∂x
= 0

d

dt

µ
∂T

∂ϕ̇

¶
− ∂T

∂ϕ
+

∂V

∂ϕ
= 0 (2.47)

The individual terms that appeare in the above equation are

d

dt

µ
∂T

∂ẋ

¶
=

d

dt
((m1 +m2)ẋ+m2Rϕ̇ cosϕ) =

= (m1 +m2)ẍ+m2Rϕ̈ cosϕ−m2Rϕ̇
2 sinϕ (2.48)

∂T

∂x
= 0 (2.49)

∂V

∂x
= 2kx (2.50)

d

dt

µ
∂T

∂ϕ̇

¶
=

d

dt

¡
m2Rẋ cosϕ+ (m2R

2 + I)ϕ̇
¢
=

= (m2R
2 + I)ϕ̈+m2Rẍ cosϕ−m2Rẋϕ̇ sinϕ (2.51)

∂T

∂ϕ
= −m2Rẋϕ̇ sinϕ (2.52)

∂V

∂ϕ
= m2gR sinϕ (2.53)

Hence, according to Eq. 2.47, we have the following equations of motion

(m1 +m2)ẍ+m2Rϕ̈ cosϕ−m2Rϕ̇
2 sinϕ+ 2kx = 0

(m2R
2 + I)ϕ̈+m2Rẍ cosϕ+m2gR sinϕ = 0 (2.54)

For small magnitudes of x and ϕ, sinϕ ∼= ϕ, cosϕ ∼= 1, ϕ̇2 ∼= 0. Taking this into
account the linearized equations of motion are

(m1 +m2)ẍ+m2Rϕ̈+ 2kx = 0

(m2R
2 + I)ϕ̈+m2Rẍ+m2gRϕ = 0 (2.55)

Their matrix form is
mẍ+ kx = 0 (2.56)

where

m =

∙
m1 +m2 m2R
m2R m2R

2 + I

¸
, k =

∙
2k 0
0 m2gR

¸
, x =

∙
x
ϕ

¸
(2.57)
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Problem 19

k k

k k

q
1

q
2 l

l

A1

A2

Figure 13

Two identical and uniform rods shown in Fig. 13, each of massm and length l,
are joined together to form an inverse double pendulum. The pendulum is supported
by four springs, all of stiffness k, in such way that its vertical position (q1 = 0 and
q2 = 0) is its stable equilibrium position. Produce equation of small vibrations of the
pendulum about this equilibrium position.
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Problem 20

l

1 2

EI

4

3 4

R

l3

GJo

Figure 14

The disk 1 of massm1 and radius R shown in Fig. 14, is fasten to the massless
and flexible shaft 3. The left hand end of the massless and flexible beam 4 is rigidly
attached to the disk 1. At its right hand side the particle 2 of m2 is placed. Derive
equations for analysis of small vibrations of the system.
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Problem 21

k

R

I2

R

k

I1

I3

J2l 2 G2J1l 1 G1

Figure 15

A belt gear was modelled as shown in Fig. 15. The shafts are assumed to
be massless and their length the second moment of inertia and the shear modulus is
denoted by l, J , and G respectively. The disks have moments of inertia I1, I2, and I3.
The belt is modelled as the spring of a stiffness k. Derive the differential equations
for the torsional vibrations of the system.



MODELLING 85

Problem 22

D

I1
I2

I3

J2l 2 G2J1l 1 G1

1 D2

Figure 16

In Fig. 16 the physical model of a gear box is presented. Derive equations for
the torsional vibrations of the gear box. The shafts the gears are mounted on are
massless.
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Problem 23

B 

O Y

X

C

α 

ll

l

l l

l

A 

12 34 56 7

Figure 17

Fig. 17 shows a mechanical system. Link 1 of the system is motionless with
respect to the inertial system of coordinates XY . The links 2 and 3 are hinged to
the link 1 at the point O. The links 4 and 5 join the links 2 and 3 with the collar 6.
The spring 7 has a stiffness k and its uncompressed length is equal to 2l. The system
has one degree of freedom and its position may be determined by one generalized
coordinate α. The links 4 5 and 6 are assumed to be massless. The links 2 and 3
can be treated as thin and uniform bars each of length 2l and mass m.

Derive equations of the small vibration of the system about its equilibrium
position.
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Problem 24

m m m

T

l
4

l
4

l
4

l
4

Figure 18

Three beads, each of mass m are attached to the massless string shown in Fig.
18. The string has length l and is loaded with the tensile force T. Derive equation of
motion of the beads
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Problem 25

Rq
1

q
2

l
m

Figure 19

On the massless string of length l the ball of massm and radius R is suspended
(see Fig. 19). Derive equation of motion of the system.
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Problem 26

k

c

m

ks1 s2k

2I1I1I 2I ii

R

Figure 20

Fig. 20 presents the physical model of a winch. The shafts of the torsional
stiffness ks1 and ks2 as well as the gear of ratio i are massless. To the right hand end
of the shaft ks2 the rotor of the moment of inertia I2 is attached. The left hand end
of the shaft ks1 is connected to the drum of the moment of inertia I1. The rope is
modelled as a massless spring of the stiffness k. At its end the block of mass m is
fastened. The damper of the damping coefficient c represents the damping properties
of the system.

Produce the differential equation of motion of the system.
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Solution

                

k              

c                               

m              

k              s1              s2                               k                         

2                         I               1              I                              2              I              i              i                               

R              

x              

α       1              

α       2              

ϕ       2              

ϕ       1              

F                               

F              
r 2  

r 1 

 

Figure 21

In Fig. 21 x, ϕ1and ϕ2 are the independant coordinates. Since the gear of the
gear ratio as well as the shafts of stiffness ks1 and ks2 are massless the coordinates
that specify the position of the of the gear α1 and α2 are not independent. They are
a function of the independent coordinates.

Let
i =

r1
r2
=

α2
α1

(2.58)

Application of the Newton’s law to the individual bodies yields equations of motion
in the following form.

mẍ = −kx+Rkϕ1 (2.59)

I1ϕ̈1 = +kRx− kR2ϕ1 − cR2ϕ̇1 − ks1ϕ1 + ks1α1 (2.60)

0α̈1 = −ks1α1 + ks1ϕ1 + Fr1 (2.61)

0α̈2 = −ks2α2 + ks2ϕ2 − Fr2 (2.62)

I2ϕ̈2 = −ks2ϕ2 + ks2α2 (2.63)

Introducing 2.58 into the equations 2.61 and 2.62 one can obtain

0 = −ks1α1 + ks1ϕ1 + iFr2 (2.64)

0 = −ks2iα1 + ks2ϕ2 − Fr2 (2.65)

Solving the above equations for α1 we have

α1 =
ks1ϕ1 + iks2ϕ2
ks1 + ks2i2

(2.66)
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Hence, according to 2.58

α2 = iα1 =
iks1ϕ1 + i2ks2ϕ2

ks1 + ks2i2
(2.67)

Introducing 2.66 and 2.67 into 2.60 and 2.63 one can get the equations of motion in
the following form

mẍ = −kx+Rkϕ1

I1ϕ̈1 = +kRx− kR2ϕ1 − cR2ϕ̇1 − ks1ϕ1 + ks1
ks1ϕ1 + iks2ϕ2
ks1 + ks2i2

(2.68)

ϕ̈2 = −ks2ϕ2 + ks2
iks1ϕ1 + i2ks2ϕ2

ks1 + ks2i2

After standardization we have

mz̈+ cż+ kz = 0

where

m =

⎡⎣ m 0 0
0 I1 0
0 0 I2i

2

⎤⎦ ; c =

⎡⎣ 0 0 0
0 cR2 0
0 0 0

⎤⎦ ; (2.69)

k =

⎡⎢⎣ k −kR 0

−kR kR2 + ks1ks2i2

ks1+ks2i2
− ks1ks2i2

ks1+ks2i2

0 − ks1ks2i2

ks1+ks2i2
ks1ks2i2

ks1+ks2i2

⎤⎥⎦ ; z =

⎡⎣ x
ϕ1
ϕ2
i

⎤⎦
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Problem 27

Z 

X 

x 

z 

G 

C 

R 

4R
3π

O 

α

Figure 22

The semi-cylinder of mass m and radius R shown in Fig. 50 is free to roll
over the horizontal plane XY without slipping. The instantaneous angular position
of this semi-cylinder is determined by the angular displacement α. Produce
1. the equation of small oscillations of the semi-cylinder (take advantage of the
Lagrange’s equations)

Answer:¡
IG +mR2

¡
1 + 16

9π2
− 8

3π

¢¢
α̈+mgR(1− 4

3π
)α = 0

where IG = 1
2
mR2 −m

¡
4
3
R
π

¢2
2. the expression for period of these oscillations.

Answer:
T = 2π

mgR(1− 4
3π )

(IG+mR2(1+ 16
9π2

− 8
3π))
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Problem 28

 I1
I 2 

J3l 3 G3

J 1 l 1 G 1 J2l 2 G2

J4l4 G4

Figure 23

The two disks of moments of inertia I1 and I2 are join together by means of
the massless shafts as is shown in Fig. 51. The dynamic properties of the shafts are
determined by their lenghts l, the second moments of area J and the shear modulus
G. Produce the differential equations of motion.

2.2 ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM

The analysis carried out in the previous section leads to conclusion that the mathe-
matical model of the linear multi-degree-of -freedom system is as follows

mẍ+ cẋ+ kx = F(t) (2.70)

where
m - matrix of inertia
c - matrix of damping
k - matrix of stiffness
F(t)- vector of the external excitation
x- vector of the generalized coordinates

2.2.1 General case
In the general case of the multi-degree-of-freedom system the matrices c and k do not
necessary have to be symmetrical. Such a situation takes place, for example, if the
mechanical structure interacts with fluid or air (oil bearings, flatter of plane wings
etc.). Since the equation 2.70 is linear, its general solution is always equal to the sum
of the general solution of the homogeneous equation xg and the particular solution
of the non-homogeneous equation xp.

x = xg + xp (2.71)

The homogeneous equation
mẍ+ cẋ+ kx = 0 (2.72)



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 94

corresponds to the case when the excitation F(t) is not present. Therefore, its gen-
eral solution represents the free (natural) vibrations of the system. The particular
solution of the non-homogeneous equation 2.70 represents the vibrations caused by
the excitation force F(t). It is often refered to as the forced vibrations.

Free vibrations - natural frequencies- stability of the equilibrium position

To analyze the free vibrations let us transfer the homogeneous equation 2.72 to so
called state-space coordinates. Let

y = ẋ (2.73)

be the vector of the generalized velocities. Introduction of Eq. 2.73 into Eq. 2.72
yields the following set of the differential equations of first order.

ẋ = y

ẏ = −m−1kx−m−1cy (2.74)

The above equations can be rewritten as follows

ż = Az (2.75)

where

z =

∙
x
y

¸
, A =

∙
0 1

−m−1k −m−1c

¸
(2.76)

Solution of the above equation can be predicted in the form 2.77.

z = z0e
rt (2.77)

Introduction of Eq. 2.77 into Eq. 2.75 results in a set of the homogeneous algebraic
equations which are linear with respect to the vector z0.

[A− 1r] z0 = 0 (2.78)

The equations 2.78 have non-zero solution if and only if the characteristic determinant
is equal to 0.

|[A− 1r]| = 0 (2.79)

The process of searching for a solution of the equation 2.79 is called eigenvalue problem
and the process of searching for the corresponding vector z0 is called eigenvector
problem. Both of them can be easily solved by means of the commercially available
computer programs.

The roots rn are usually complex and conjugated.

rn = hn ± iωn n = 1.....N (2.80)

Their number N is equal to the number of degree of freedom of the system considered.
The particular solutions corresponding to the complex roots 2.80 are

zn1 = ehnt(Re(z0n) cosωnt− Im(z0n) sinωnt)

zn2 = ehnt(Re(z0n) sinωnt+ Im(z0n) cosωnt) n = 1.....N (2.81)
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In the above expressions Re(z0n) and Im(z0n) stand for the real and imaginary part
of the complex and conjugated eigenvector z0n associated with the n

th root of the
set 2.80 respectively. The particular solutions 2.81 allow to formulate the general
solution that approximates the system free vibrations..

z = [z11, z12,z21, z22,z31, z32,.....zn1, zn2,.........zN1, zN2]C (2.82)

As one can see from the formulae 2.81, the imaginary parts of roots rn represent
the natural frequencies of the system and their real parts represent rate of
decay of the free vibrations. The system with N degree of freedom possesses
N natural frequencies. The equation 2.82 indicates that the free motion of a multi-
degree-of-freedom system is a linear combination of the solutions 2.81.

A graphical interpretation of the solutions 2.81 is given in Fig. 24 for the
positive and negative magnitude of hn.The problem of searching for the vector of the
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Figure 24

constant magnitudes C is called initial problem. In the general case, this problem is
difficult and goes beyond the scope of this lectures.

The roots 2.80 allow the stability of the system equilibrium position to be
determined.

If all roots rn of the equation 2.80 have negative real parts then the
equilibrium position of the system considered is stable.

If at least one root of the equation 2.80 has positive real part then
the equilibrium position of the system considered is unstable.

Forced vibrations - transfer functions

The response to the external excitation F(t) of a multi-degree-of-freedom system is
determined by the particular solution of the mathematical model 2.70.

mẍ+ cẋ+ kx = F(t) (2.83)

Let us assume that the excitation force F(t) is a sum of K addends. For the further
analysis let us assume that each of them has the following form

F k = F k
o cos(ωt+ ϕk

o) (2.84)

To facilitate the process of looking for the particular solution of equation 2.83, let us
introduce the complex excitation force by adding to the expression 2.84 the imaginary
part.

fk = F k
o cos(ωt+ ϕk

o) + iF k
o sin(ωt+ ϕk

o) (2.85)
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The relationship between the complex excitation fk and the real excitation is shown
in Fig. 25. According to Euler’s formula the complex excitation may be rewritten as

ω

kf

t

0
kF ϕ0

k

Re

Im

0
kF   cos(             )ω t+ϕ0

k

kF

ω t

ϕ0
k

ω t

0
kF

Figure 25

follows
fk = F k

o e
i(ωt+ϕko) = F k

o e
iϕkoeiωt = fko e

iωt (2.86)

Here, fko is a complex number that depends on the amplitude and phase of the external
excitation. Introduction of Eq. 2.86 into Eq. 2.83 yields

mẍ+ cẋ+ kx = foe
iωt (2.87)

Now, the particular solution of Eq. 2.87 can be predicted in the complex form 2.88

xc = aeiωt (2.88)
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Introduction of Eq. 2.88 into Eq. 2.87 produces set of the algebraic equations which
are linear with respect to the unknown vector a.¡−ω2m+ iωc+ k

¢
a = fo (2.89)

Its solution is
a =

¡−ω2m+ iωc+ k
¢− 1

fo (2.90)

Therefore, according to Eq. 2.88, the response of the system xc due to the complex
force f is

xc = (Re(a) + i Im(a))(cosωt+ i sinωt) (2.91)

Response of the system x due to the real excitation F is represented by the real part
of the solution 2.91.

x = Re(a) cosωt− Im(a) sinωt (2.92)

Motion of the system considered along the coordinate xk, according to 2.92 is

xk = xko cos(ωt+ βk) (2.93)

where

xko =
p
Re(ak)2 + Im(ak)2 βk = arc tan

Im(ak)

Re(ak)
(2.94)

It is easy to see from 2.91 that the amplitude of the forced vibration xko is equal to the
absolute value of the complex amplitude ak, and its phase βk is equal to the phase
between the complex amplitudes ak and the vector eiωt. This findings are presented
in Fig. 26.

The complex matrix ¡−ω2m+ iωc+ k
¢− 1

(2.95)

will be denoted by R(iω) and it is called matrix of transfer functions. It transfers,
according to 2.90, the vector of the complex excitation foeiωt into the vector of the
complex displacement xc = aeiωt.

xc = aeiωt = R(iω)foe
iωt (2.96)

It is easy to see that the element Rpq(iω) of the matrix of transfer functions represents
the complex displacement (amplitude and phase) of the system along the coordinates
xp caused by the unit excitation 1eiωt along the coordinate xq. Example of three
elements of a matrix of the transform functions are presented in Fig. 27. The first
two diagrams present the real and the imaginary parts of the complex transform
functions whereas the last two present its absolute value (amplitude) and phase.



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 98

ω

kf

t

0
kF

ϕ0
k

Re

Im

0
kF   cos(             )ω t+ϕ0

k

kF

ω t

ϕ0
k

ω t

0
kF

β 0
k

β 0
k

0
kx

0
kx

0
kx   cos(             )ω t+β 0

k

kx

ka

Figure 26



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 99

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

500 1000 1500 frequency rad/s

transfer function m/N (imaginary part)

R(1,1)
R(1,2)
R(1,3)

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

500 1000 1500 frequency rad/s

transfer functions m/N (real parts)

R(1,1)
R(1,2)
R(1,3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0
500 1000 1500 frequency rad/s

transfer function m/N (modulus)

R(1,1)

R(1,2)

R(1,3)

-4

-2

0

2

4

500 1000 1500 frequency rad/s

transfer functions m/N (phase)

R(1,1)
R(1,2)
R(1,3)

Figure 27



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 100

Experimental determination of the transfer functions
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In order to produce the transfer function between the coordinate xp and the coor-
dinate xq (see Fig. 28) let us apply force Fq(t) along the coordinate xq and record
it simultaneously with the system response xp(t) along the coordinate xp. Fourier
transformation applied to these functions

Fq(iω) =

Z +∞

−∞
e−iωtFq(t)dt

xp(iω) =

Z +∞

−∞
e−iωtxp(t)dt (2.97)

yields the Fourier transforms in the frequency domain xp(iω) and Fq(iω). The am-
plitude of the complex functions xp(iω) and Fq(iω)

|xp(iω)| =
q
Re(xp(iω))2 + Im(xp(iω))2

|Fq(iω)| =
q
Re(Fq(iω))2 + Im(Fq(iω))2 (2.98)
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represents the amplitude of displacement and force respectively as a function of the
frequency ω. The corresponding phases are determined by the following formulae.

ϕxp = arctan
Im(xp(iω))

Re(xp(iω))

ϕFq = arctan
Im(Fq(iω))

Re(Fq(iω))
(2.99)

These Fourier transforms allow the transfer function Rpq(iω) to be computed.

Rpq(iω) =
xp(iω)

Fq(iω)
(2.100)

The above formula determines response of the system along coordinate xp caused by
the harmonic excitation Fq along the coordinate xq.

xp(iω) = Rpq(iω)Fq(iω) (2.101)

Since the system considered is by assumption linear, the response along the coordinate
xp caused by set of forces acting along coordinates N coordinates xq, according to
the superposition principle, is

xp(iω) =

q=NX
q=1

Rpq(iω)Fq(iω) q = 1....N (2.102)

Application of the above described experimental procedure to all coordinates involved
in the modelling (p = 1....N) allows to formulate the matrix of the transfer functions
Rpq(iω).The relationship above can be rewritten in the following matrix form

x(iω) = Rpq(iω)F(iω) p = 1....N, q = 1....N (2.103)
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2.2.2 Modal analysis - case of small damping
In the following analysis it will be assumed that the matrices m, c and k are square
and symmetrical. Size of these matrices is N × N where N is the number of the
system degree of freedom. If the vector of the external excitation F(t) is equal to
zero, it is said that the system performs free vibrations. According to the above
definition the free vibrations are governed by the homogeneous set of equations

mẍ+ cẋ+ kx = 0 (2.104)

Free vibration of the undamped system - eigenvalue and eigenvector prob-
lem

If the damping is neglected the equation of the free vibrations is

mẍ+ kx = 0 (2.105)

It is easy to see that
x = X cosωt (2.106)

is a particular solution of the equation 2.105. Indeed, introduction of Eq. 2.106 into
2.105 yields

(−ω2m+ k)X cosωt = 0 (2.107)

and the differential equation 2.105 is fulfilled for any instant of time if the following
set of the homogeneous algebraic equations is fulfilled.

(−ω2m+ k)X = 0 (2.108)

In turn, the above set of equations has the non-zero solutions if and only if its char-
acteristic determinant is equal to zero¯̄−ω2m+ k

¯̄
= 0 (2.109)

The above characteristic equation, for any physical system, has N positive roots with
respect to the parameter ω2. Hence, the parameter ω can take any of the following
values

±ω1, ±ω2, ±ω3, .....± ωn, ....± ωN (2.110)

As one can see from Eq. 2.106, these parameters have the physical meaning only for
positive values. They represent frequencies of the system free vibrations. They are
called natural frequencies. The number of different natural frequencies is therefore
equal to the number of degree of freedom. For each of the possible natural frequencies
ωn the system of equations 2.108 becomes linearly dependent and therefore has infinite
number of solution Xn. Its follows that if Xn is a solution of Eq. 2.108, the vector

CnXn (2.111)

where Cn is arbitrarily chosen constant, is solution of the Eq. 2.108 too. The vec-
tor Xn represents so called natural mode of vibration associated with the natural
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frequency ωn. It determines the shape that the system must possess to oscillate
harmonically with the frequency ωn.

For example, if a beam with four concentrated masses is considered (see Fig.
29) the vector Xn contains four numbers

Xn = [X1n,X2n,X3n,X4n]
T (2.112)

If the system is deflected according to the this vector and allowed to move with the

Tn

X 1n

X 2n
X 3n

X 4n

x
3nx    = X     cos      t3n ω n

t

Figure 29

initial velocity equal to zero, it will oscillate with the frequency ωn. There are four
such a natural modes and four corresponding natural frequencies for this system.

The problem of the determination of the natural frequencies is called eigen-
value problem and searching for the corresponding natural modes is called eigenvector
problem. Therefore the natural frequencies are very often referred to as eigenvalue
and the natural modes as eigenvectors.

Now, one can say that the process of determination of the particular solution

xn= Xn cosωnt (2.113)

of the equation 2.105 has been accomplished. There are N such particular solutions.
In similar manner one can prove that

xn= Xn sinωnt (2.114)

is a particular solution too. Since the solutions ?? and 2.114 are linearly independent,
their linear combination forms the general solution of the equation 2.105

xn =
NX
n=1

(SnXn sinωnt+ CnXn cosωnt) (2.115)

The 2N constants Sn and Cn should be chosen to satisfy the 2N initial conditions.
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Properties of the natural modes.

Each eigenvector has to fulfill the Eq. 2.108. Hence,

−ω2nmXn+kXn = 0

−ω2mmXm+kXm = 0 (2.116)

Primultiplying the first equation by XT
m and the second equation by X

T
n one can get

−ω2nXT
mmXn+X

T
mkXn = 0

−ω2mXT
nmXm+X

T
nkXm = 0 (2.117)

Since matrices m and k are symmetrical

XT
mkXn = X

T
nkXm and XT

mmXn = X
T
nmXm (2.118)

Now, primultiplying the first equation of set 2.117 by -1 and then adding them to-
gether we are getting

(ω2n − ω2m)X
T
nmXm = 0 (2.119)

Since for n 6= m (ω2n − ω2m) 6= 0,
XT

nmXm = 0 for n 6= m (2.120)

If n = m, since (ω2n − ω2n) = 0, the product X
T
nmXn does not have to be equal to

zero. Let this product be equal to λ2n

XT
nmXn = λ2n (2.121)

Division of the above equation by λ2n yields

(
1

λn
XT

n )m(
1

λn
Xn) = 1 (2.122)

But according to 2.111 1
λn
Xn is eigenvector too. Let us denot it by Ξn

Ξn =
1

λn
Xn (2.123)

The process of producing of the eigenvectors Ξn is called normalization and the
eigenvector Ξn is called normalized eigenvector or normalized mode. According to
2.122,

ΞT
nmΞn = 1 (2.124)

Taking into account Eq’s 2.120 and 2.124 one can conclude that

ΞT
nmΞm =

½
0 if n 6= m
1 if n = m

¾
(2.125)

It is said that eigenvectors Ξn and Ξm that fulfill the above conditions are orthogonal
with respect to the inertia matrix m.
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Owning to the above orthogonality condition, the second of the equations
2.117 yields

ΞT
nkΞm =

½
0 if n 6= m
ω2n if n = m

¾
(2.126)

It means that the normalized modes are orthogonal with respect to the matrix of
stiffness.

The modal modes Ξn can be arranged in a square matrix of order N known
as the modal matrix Ξ .

Ξ = [Ξ1,Ξ2, .....Ξn, ......ΞN ] where N is number of degrees of freedom (2.127)

It is easy to see that the developed orthogonality conditions yields

ΞTmΞ = 1

ΞTkΞ = ω2 (2.128)

where ω2 is a square diagonal matrix containing the squared natural frequencies ω2n

ω2 =

⎡⎢⎢⎢⎢⎢⎢⎣
ω21 0 . 0 . 0
0 ω22 . 0 . 0
. . . . . .
0 0 . ω2n . 0
. . . . . .
0 0 . 0 . ω2N

⎤⎥⎥⎥⎥⎥⎥⎦ (2.129)

Normal coordinates - modal damping

Motion of any real system is always associated with a dissipation of energy. Vibrations
of any mechanical structures are coupled with deflections of the elastic elements.
These deflections, in turn, cause friction between the particles the elements are made
of. The damping caused by such an internal friction and damping due to friction of
these elements against the surrounding medium is usually referred to as the structural
damping. In many cases, particularly if the system considered is furnished with
special devices design for dissipation of energy called dampers, the structural damping
can be omitted. But in case of absence of such devices, the structural damping has
to be taken into account. The structural damping is extremely difficult or simply
impossible to be predicted by means of any analytical methods. In such cases the
matrix of damping c (see Eq. 2.104) is assumed as the following combination of the
matrix of inertia m and stiffness k with the unknown coefficients µ and κ.

c =µm+κk (2.130)

This coefficients are to be determined experimentally.
It will be shown that application of the following linear transformation

x = Ξη (2.131)
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to the mathematical model

mẍ+ cẋ+ kx = F(t) (2.132)

results in its decoupling. Indeed, introduction of the transformation 2.131 into 2.132
yields

mΞη̈ + cΞη̇ + kΞη = F(t) (2.133)

Primultiplying both sides of the above equation by ΞT we obtain

ΞTmΞη̈ +ΞT(µm+κk)Ξη̇ +ΞTkΞη = ΞTF(t) (2.134)

Taking advantage of the orthogonality conditions 2.128 we are getting set of indepen-
dent equations

1η̈ + γη̇ +ω2nη = ΞTF(t) (2.135)

where
1 - the unit matrix
ω2n and γ = (µ1+κω

2
n) - diagonal matrices

Hence, each equation of the above set has the following form

η̈n + 2ςnωnη̇n + ω2nηn = ΞTnF(t) n = 1, 2, ...N (2.136)

The coefficients ςn = (µ+κω2n)/2ωn are often referred to as the modal damping ratio.
Solution of each of the above equations can be obtained independently and

according to the discussion carried out in the first chapter (page 30, Eq. 1.46) can
be written as follows

ηn = e−ςnωnt(Csn sinωdnt+ Ccn cosωdnt) + ηpn (2.137)

where ωdn = ωn

p
1− ς2n and ηpn stands for the particular solution of the non-

homogeneous equation 2.136. Problem of determination of this particular solution is
considered in the next section.

Introduction of the solutions 2.137 into equation 2.131 yields motion of the
system along the physical coordinates x.

Response to the harmonic excitation - transfer functions

Let us solve the Eq. 2.136 for response of the system due to the harmonic excitation
along coordinate xq. In this case the right hand side of the equation 2.136 takes form

ΞTnF(t) = ΞTn

⎡⎢⎢⎢⎢⎣
0
.
Fqe

iωt

.
0

⎤⎥⎥⎥⎥⎦ = ΞqnFqe
iωt (2.138)

Hence
η̈n + 2ςnωnη̇n + ω2nηn = ΞqnFqe

iωt n = 1, 2, ...N (2.139)
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Therefore

ηn =
ΞqnFq

ω2n − ω2 + 2ςnωnωi
eiωt n = 1, 2, ...N (2.140)

Since
x = Ξη (2.141)

response along coordinate xp

xp = eiωt
NX
n=1

ΞpnΞqnFq

ω2n − ω2 + 2ςnωnωi
(2.142)

transfer function between coordinate p and the others

xp
Fqeiωt

=
NX
n=1

ΞpnΞqn

ω2n − ω2 + 2ςnωnωi
q = 1, 2, .......N (2.143)

Rpq(iω) =
xp

Fqeiωt
=
PN

n=1
ΞpnΞqn((ω2n−ω2)−2ςnωnωi)

(ω2n−ω2)2+4ς2nω2nω2 =

=
PN

n=1

³
ΞpnΞqn(ω2n−ω2)

(ω2n−ω2)2+4ς2nω2nω2 +
−2ΞpnΞqnςnωnωi
(ω2n−ω2)2+4ς2nω2nω2

´
q = 1, 2, .......N

(2.144)

if ω ∼= ωn Rpq(iω) ∼= ΞpnΞqn(ω
2
n − ω2)

4ς2nω
2
nω

2
+
−ΞpnΞqni

2ςnωnω
q = 1, 2, .......N (2.145)

Determination of natural frequencies and modes from the transfer func-
tions

The transfer functions Rpq(iω) can be easily obtained by means of a simple exper-
iment (see page 100). They allow the natural frequencies, natural modes and the
modal damping to be identified. It can be seen from the equation 2.145 that the
real part of the transfer function Rpq(iω) is equal to zero for the frequency equal
to the natural frequency ωn. Hence the zero-points of the real part of the transfer
functions determine the system natural frequencies. From the same equation it is
apparent that the imaginary parts corresponding to ω ∼= ωn and measured for differ-
ent q = 1, 2, .......N, but for the same p yield the natural modes with accuracy to the
constant magnitude C = −2ςnω2n

Ξpn

Ξnq = C Im(Rpq(iωn)) q = 1, 2, .......N (2.146)

Alternatively, The natural frequencies and the natural modes can be extracted from
diagrams of the magnitudes and phases of the transfer function.

The phase ϕ, since the real part of the transfer function is equal to zero for
ω = ωn, is equal to ±90o

ϕn = arctan
Im (Rpq(iωn))

Re (Rpq(iωn))
= ± arctan∞ = ±90o (2.147)

This property allows the natural frequencies to be determined.
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Since the real part of the transfer function is equal to zero for ω = ωn, its
modulus is equal to the absolute value of imaginary part.

|Rpq(iω)| =
¯̄̄̄
Ξpn

2ςnω2n
Ξqn

¯̄̄̄
(2.148)

Hence

Ξnq = C |Rpq(iω)| q = 1, 2, .......N (2.149)

where

C =

¯̄̄̄
2ςnω

2
n

Ξpn

¯̄̄̄
(2.150)

Signe of the idividual elements Ξnq of the mode n is deremined by signe of the corre-
sponding phase ϕn = ±90o

An example of extracting the natural frequency and the corresponding natural
mode from the transfer functions is shown in Fig. 30
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The demonstated in this chapter approach for solution of the vibration prob-
lems is referred to as modal analysis.
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2.2.3 Kinetic and potential energy functions - Dissipation function
In this section the kinetic energy function, the potential energy function and the
dissipation function are formulated for a linear system governed by the equation

mẍ+ cẋ+ kx = F(t) (2.151)

where the matrices m, c and k are symmetric and positive definite matrices.

Kinetic energy function

Let us consider function

T =
1

2
ẋTmẋ ẋ = {ẋ1, ......ẋn........ẋN}T (2.152)

Performing the matrix multiplication we are getting

T =
1

2
{ẋ1, ..ẋn..ẋN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pm=N
m=1 m1mẋm

.................Pm=N
m=1 mnmẋm

..................Pm=N
m=1 mNmẋm

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
1

2

n=NX
n=1

Ã
ẋn

m=NX
m=1

mnmẋm

!
(2.153)

=
1

2

n=NX
n=1

m=NX
m=1

mnmẋnẋm

If this function is positive definite (is always positive and is equal to zero if and only
if all variables ẋn are equal to zero) the corresponding matrix m is called positive
definite matrix.

If T is the kinetic energy function, according to Lagrange’s equations should
be

d

dt

µ
∂T

∂ẋn

¶
− ∂T

∂xn
= {mn1, ..mnn..mnN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẍ1
....
ẍn
.....
ẍN

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.154)

Let us prove that the function 2.152 fulfills the requirement 2.154.

d

dt

µ
∂T

∂ẋn

¶
− ∂T

∂xn

=
d

dt

⎛⎜⎜⎜⎜⎝12
⎛⎜⎜⎜⎜⎝{0, 0..1..0}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pm=N
m=1 m1mẋm

.................Pm=N
m=1 mnmẋm

..................Pm=N
m=1 mNmẋm

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+ {ẋ1, ..ẋn..ẋN}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m1n

.......
mmn

.......
mNn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ =

=
d

dt

Ã
1

2

Ã
m=NX
m=1

mnmẋm +
m=NX
m=1

mmnẋm

!!
(2.155)
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Since mnm = mmn

d

dt

µ
∂T

∂ẋn

¶
− ∂T

∂xn
=

d

dt

Ã
1

2
2
m=NX
m=1

mnmẋm

!
=

d

dt

Ã
m=NX
m=1

mnmẋm

!
(2.156)

=
m=NX
m=1

mnmẍm = {mn1, ......mnn........mnN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẍ1
....
ẍn
.....
ẍN

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Now we may conclude that the function 2.152 is the kinetic energy function if the
matrix m is symmetric and positive definite.

Potential energy function

Let us consider function

V =
1

2
xTkx x = {x1......xn........xN}T (2.157)

Performing the matrix multiplication we are getting

V =
1

2
{x1, x2..xn..xN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pm=N
m=1 k1mxm

.................Pm=N
m=1 knmẋm

..................Pm=N
m=1 kNmẋm

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
1

2

n=NX
n=1

Ã
xn

m=NX
m=1

knmxm

!
(2.158)

=
1

2

n=NX
n=1

m=NX
m=1

knmxnxm

If V is the potential energy function, it must be positive definite and according to
Lagrange’s equations should fulfills the following relationship

∂V

∂xn
= {kn1, ......knn........knN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1
....
xn
.....
xN

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.159)

Let us prove that the function 2.157 fulfills the requirement 2.159.

∂V

∂xn
=

1

2

⎛⎜⎜⎜⎜⎝{0, 0..1..0}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pm=N
m=1 k1mxm

.................Pm=N
m=1 knmxm

..................Pm=N
m=1 kNmxm

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+ {x1, ..xn..xN}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k1n
.......
kmn

.......
kNn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠ =

=
1

2

Ã
m=NX
m=1

knmxm +
m=NX
m=1

kmnxm

!
(2.160)
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Since knm = kmn

∂V

∂xn
=
1

2
2
m=NX
m=1

knmxm =
m=NX
m=1

knmxm = {kn1, ......knn........knN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1
....
xn
.....
xN

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.161)

Now we may conclude that the function 2.157 is the kinetic energy function if the
matrix k is symmetric and positive definite.

Dissipation function

It is easy to notice, having in mind the previous consideration, that the function

D =
1

2
ẋTcẋ ẋ = {ẋ1, ......ẋn........ẋN}T (2.162)

fulfills the following relationship

∂D

∂ẋn
= {cn1, ......cnn........cnN}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1
....
ẋn
.....
ẋN

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.163)

It follows that if the matrix of damping is symmetrical and positive definite, such a
damping can be included in the Lagrange’s equation in the following way

d

dt

µ
∂T

∂ẋn

¶
− ∂T

∂xn
+

∂V

∂xn
+

∂D

∂ẋn
= Qn (2.164)

The function D is called dissipation function. It must be noted that the dissi-
pation function does not represent the dissipation energy.

The damping forces, in a general case, are not conservative and have to be
included in the generalized force Qn.
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2.2.4 Problems
Problem 29

m 1J1l 1 E1

J2 E2
m 2

k

l 2
2

l 2
2

A

c

y

B

Figure 31

The point A of the system shown in Fig. 31 moves according to the following
equation

y = A1 sin(f1t) +A2 sin(f2t) (2.165)

where A1 and A2 are amplitudes of this motion and f1 and f2 are the corresponding
frequencies.

Produce
1. the differential equations of motion
2. the natural frequencies
3. the steady state motion of the system due to the kinematic excitation y
4. the exciting force at the point A required to maintain the steady state

motion
5. the reaction force and the reaction moment at the point B. .
Given are:
l1 = 1m E1 = 0.2 · 1012N/m2 J1 = 1 · 10−8m4 m1 = 10kg
l2 = 2m E2 = 0.2 · 1012N/m2 J2 = 1 · 10−8m4 m2 = 20kg
k = 10000N/m
c = 100Ns/m
A1 = 0.01m f1 = 30rad/s
A2 = 0.01m f2 = 35rad/s
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Solution

1. The differential equations of motion

m 1J1l 1 E1

J2 E2
m 2

y1k

l 2
2

l 2
2

A

c

y

B

y2

Figure 32

Utilization of the Newton-Euler approach for modelling of the system shown
in Fig. 32 allows to develop its mathematical model.

m1ÿ1 = −k1y1 − ky1 + ky2

m2ÿ2 = −k2y2 − ky2 + ky1 − cẏ2 + cẏ (2.166)

Its matrix form is∙
m1

m2

¸ ∙
ÿ1
ÿ2

¸
+

∙
0

c

¸ ∙
ẏ1
ẏ2

¸
+

∙
k + k1 −k
−k k + k2

¸ ∙
y1
y2

¸
=

∙
0
cẏ

¸
(2.167)

or shorter
mÿ + cẏ + ky = F(t) (2.168)

where

m =

∙
m1 0
0 m2

¸
; c =

∙
0 0
0 c

¸
; k =

∙
k + k1 −k
−k k + k2

¸
; F(t) =

∙
0
cẏ

¸
(2.169)

Taking into consideration Eq. 2.165, the excitation cẏ is

cẏ = cA1f1 cos(f1t) + cA2f2 cos(f2t) = a1 cos(f1t) + a2 cos(f2t) (2.170)

where
a1 = cA1f1; a2 = cA2f2

Introduction of Eq. 2.170 into the equation of motion 2.168 yields

mÿ + cẏ+ ky = F1(t) + F2(t) (2.171)
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where

F1(t) =

∙
0

a1 cos(f1t)

¸
; F2(t) =

∙
0

a2 cos(f2t)

¸
(2.172)

For the given numerical data the stiffness of the beam 1 at the point of attachment
of the mass 1 is

k1 =
3E1J1
l31

=
3 · 0.2 · 1012 · 1 · 10−8

13
= 6000N/m (2.173)

The stiffness of the beam 2 at the point of attachment of the mass 2 is

k2 =
48E2J2

l32
=
48 · 0.2 · 1012 · 1 · 10−8

23
= 12000N/m (2.174)

Hence

m =

∙
10 0
0 20

¸
; c =

∙
0 0
0 100

¸
; k =

∙
16000 −10000
−10000 22000

¸
F1(t) =

∙
0

30 cos(30t)

¸
; F2(t) =

∙
0

35 cos(35t)

¸ (2.175)

2. Free motion - the natural frequencies

To analyze the free vibrations let us transfer the homogeneous equation 2.171
to the state-space coordinates. The substitution

w = ẏ (2.176)

results in the following set of equations

ż = Az (2.177)

where

z =

∙
y
w

¸
, A =

∙
0 1

−m−1k −m−1c

¸
=

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
−1600.0 1000 0 0
500 −1100 0 −5

⎤⎥⎥⎦ (2.178)

Solution of the eigenvalue problem yields the following complex roots

ω1 = −1. 6741± 24. 483i
ω2 = −0. 8259± 45. 734i (2.179)

For underdamped system the imaginary part of the above roots represents the natural
frequency of the damped system. The real part indicates the rate of decay of the free
vibrations.
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Solution of the eigenvector problem produces the following complex vectors.

Re z01 =

⎡⎢⎢⎣
−1. 6392× 10−2
−1. 7637× 10−2

. 38263

. 35302

⎤⎥⎥⎦ , Im z01 =

⎡⎢⎢⎣
−1. 4508× 10−2
−1. 3213× 10−2
−. 37705
−. 40969

⎤⎥⎥⎦

Re z02 =

⎡⎢⎢⎣
1. 9755× 10−2
−1. 0154× 10−2

. 26033
−5. 9162× 10−2

⎤⎥⎥⎦ , Im z02 =

⎡⎢⎢⎣
−6. 049× 10−3
1. 477× 10−3

. 90847
−. 46561

⎤⎥⎥⎦ (2.180)

According to 2.81, the particular solutions are

z11 = eh1t(Re(z01) cosω1t− Im(z01) sinω1t) =

= e−1. 6741t

⎛⎜⎜⎝
⎡⎢⎢⎣
−1. 6392× 10−2
−1. 7637× 10−2

. 38263

. 35302

⎤⎥⎥⎦ cos 24. 483t−
⎡⎢⎢⎣
−1. 4508× 10−2
−1. 3213× 10−2
−. 37705
−. 40969

⎤⎥⎥⎦ sin 24. 483t
⎞⎟⎟⎠

z12 = eh1t(Re(z01) sinω1t+ Im(z01) cosω1t) =

= e−1. 6741t

⎛⎜⎜⎝
⎡⎢⎢⎣
−1. 6392× 10−2
−1. 7637× 10−2

. 38263

. 35302

⎤⎥⎥⎦ sin 24. 483t+
⎡⎢⎢⎣
−1. 4508× 10−2
−1. 3213× 10−2
−. 37705
−. 40969

⎤⎥⎥⎦ cos 24. 483t
⎞⎟⎟⎠

z21 = eh2t(Re(z02) cosω2t− Im(z02) sinω2t) =

= e−0. 8259t

⎛⎜⎜⎝
⎡⎢⎢⎣
1. 9755× 10−2
−1. 0154× 10−2

. 26033
−5. 9162× 10−2

⎤⎥⎥⎦ cos 45. 734t−
⎡⎢⎢⎣
−6. 049× 10−3
1. 477× 10−3

. 90847
−. 46561

⎤⎥⎥⎦ sin 45. 734t
⎞⎟⎟⎠

z22 = eh2t(Re(z02) sinω2t+ Im(z02) cosω2t) =

= e−0. 8259t

⎛⎜⎜⎝
⎡⎢⎢⎣
1. 9755× 10−2
−1. 0154× 10−2

. 26033
−5. 9162× 10−2

⎤⎥⎥⎦ sin 45. 734t+
⎡⎢⎢⎣
−6. 049× 10−3
1. 477× 10−3

. 90847
−. 46561

⎤⎥⎥⎦ cos 45. 734t
⎞⎟⎟⎠

(2.181)

The two first rows in the above solutions represent displacement along the coordinates
y1 and y2 respectively. The two last rows represents the generalized velocities along
the coordinates y1 and y2. Example of the motion along the coordinate y1, associated
with the particular solution z11 (y111) and z21 (y211)

y111 = e−1. 6741t(−1. 6392× 10−2 cos 24. 483t+ 1. 4508× 10−2 sin 24. 483t)
y211 = e−0. 8259t(1. 9755× 10−2 cos 45. 734t+ 6. 049× 10−3 sin 45. 734t) (2.182)

are presented in Fig 33.
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t[s]43210

0.01

-0.01

-0.02

y111[m]

t[s]4320

0.01

-0.01

-0.02

y211[m]

1

Figure 33
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3. The steady state motion of the system due to the kinematic excitation

According to the given data, motion of the point A is

y = 0.01 · sin(30 · t) + 0.01 · sin(35 · t) (2.183)

t[s]1.510.5

y[m]

0.01

0

-0.01

-0.02

Figure 34

The time history diagram of this motion is given in Fig. 34
The particular solution y, which represents the forced vibration, according to

the superposition rule, is
y = y1 + y2 (2.184)

where y1 is the particular solution of the equation 2.185

mÿ+ cẏ + ky = F1(t) (2.185)

and y2 is the particular solution of the equation 2.186

mÿ+ cẏ + ky = F2(t) (2.186)

To produce the particular solution of the equation 2.185 let us introduce the complex
excitation

Fc
1(t) =

∙
0

a1 cos(f1t) + ia1 sin(f1t)

¸
=

∙
0

a1e
if1t

¸
=

∙
0
a1

¸
eif1t =

= F10e
if1t =

∙
0
30

¸
ei30t (2.187)

Hence the equation of motion takes form

mÿ + cẏ + ky = F10e
if1t (2.188)

Its particular solution is
yc1 = y

c
10e

if1t (2.189)
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where

yc10 = (−f21m+if1c+ k)−1F10 =

=

µ
−302

∙
10 0
0 20

¸
+ 30i

∙
0 0
0 100

¸
+

∙
16000 −10000
−10000 22000

¸¶−1 ∙
0
30

¸
=

=

∙ −.00 384− .00 112i
−2. 688× 10−3 − 7. 84× 10−4i

¸
(2.190)

The motion of the system, as the real part of 2.189 is

y1 = Re

µ∙ −.00 384− .00 112i
−2. 688× 10−3 − 7. 84× 10−4i

¸
ei30t

¶
=

∙ −.00 384 cos 30t+ .00 112 sin 30t
−2. 688× 10−3 cos 30t+ 7. 84× 10−4 sin 30t

¸
Similarly, one can obtained motion due to the excitation F2(t)

yc20 = (−f22m+if2c+ k)−1F20 =

=

µ
−352

∙
10 0
0 20

¸
+ 35i

∙
0 0
0 100

¸
+

∙
16000 −10000
−10000 22000

¸¶−1 ∙
0
35

¸
=

=

∙ −3. 1546× 10−3 − 3. 7855× 10−4i
−1. 183× 10−3 − 1. 4196× 10−4i

¸
(2.191)

Hence

y2 = Re

µ∙ −3. 1546× 10−3 − 3. 7855× 10−4i
−1. 183× 10−3 − 1. 4196× 10−4i

¸
ei35t

¶
=

∙ −3. 1546× 10−3 cos 35t+ 3. 7855× 10−4 sin 35t
−1. 183× 10−3 cos 35t+ 1. 4196× 10−4 sin 35t

¸
(2.192)

The resultant motion of the system due to both components of excitation is

y = y1 + y2

=

∙ −.00 384 cos 30t+ .00 112 sin 30t
−2. 688× 10−3 cos 30t+ 7. 84× 10−4 sin 30t

¸
+

+

∙ −3. 1546× 10−3 cos 35t+ 3. 7855× 10−4 sin 35t
−1. 183× 10−3 cos 35t+ 1. 4196× 10−4 sin 35t

¸
=∙ −.00 38 cos 30t+ .00 11 sin 30t− 3. 15× 10−3 cos 35t+ 3. 78× 10−4 sin 35t

−2. 6× 10−3 cos 30t+ 7. 8× 10−4 sin 30t− 1. 1× 10−3 cos 35t+ 1. 41× 10−4 sin 35t
¸

(2.193)

This resultant motion of the system along the coordinates y1 and y2, computed
according to the equation 2.193, is shown in Fig. 35 and 36 respectively.
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t[s]1.510.5

y1[m]

0.005

0

-0.005

-0.01

Figure 35

t[s]1.510.5

0.005

0

-0.005

-0.01

y2[m]

Figure 36
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4. The exciting force at the point A required to maintain the steady
state motion

m 2

A

c

y

y2

y2

y

.

.

Figure 37

To develop the expression for the force necessary to move the pointA according
to the assumed motion 2.183, let us consider the damper c shown in Fig. 37. If the
point A moves with the velocity ẏ and in the same time the mass m2 moves with the
velocity ẏ2, the relative velocity of the point A with respect to the mass m2 is

v = ẏ − ẏ2 (2.194)

Therefore, to realize this motion, it is necessary to apply at the point A the following
force

FA = c (ẏ − ẏ2) (2.195)

Hence, according to the equation 2.183 and 2.193 we have

FA = 100(
d
dt
(0.01 · sin 30t+ 0.01 · sin 35t)+

− d
dt
(−2. 6 · 10−3 cos 30t+ 7. 8 · 10−4 sin 30t+

−1. 1 · 10−3 cos 35t+ 1. 4 · 10−4 sin 35t)) =
= 27. 648 cos 30t+ 34. 503 cos 35t− 8. 064 sin 30t− 4. 1405 sin 35t[N ]

(2.196)

Diagram of this force is presented in Fig.38
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t[s]1.510.5

FA[N]

40

20

0
-20

-40

-60

Figure 38

5. The reaction force and the reaction moment at the point B.

RB

M B

P
J1l 1 E1

B

y1

Figure 39

According to Fig. 39

RB = P

MB = Pl1 (2.197)

where P is dependent on the instantaneous displacement y1. This relationship is
determined by the formula 2.173

P = k1y1 =
3E1J1
l31

y1 =
3 · 0.2 · 1012 · 1 · 10−8

13
= 6000y1 (2.198)

The motion along the coordinate y1 is determined by the function 2.193

y1 = −.00 38 cos 30t+ .00 11 sin 30t−3. 15×10−3 cos 35t+3. 78×10−4 sin 35t (2.199)
Hence

RB=6000
¡−.00 38 cos 30t+.00 11 sin 30t−3. 15×10−3 cos 35t+ 3. 78×10−4 sin 35t¢

MB=6000·1·
¡−.00 38 cos 30t+.00 11 sin 30t−3. 15×10−3 cos 35t+3. 78×10−4 sin 35t¢

(2.200)
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Problem 30

The link 1 of a mass m1, shown in Fig. 40, can move along the horizontal
slide and is supported by two springs 3 each of stiffness k. The ball 2 of mass m2

and a radius r is hinged to the link 1 at the point A by means of the massless and
rigid rod 4. All motion is in the vertical plane. The equation of motion, in terms of
the coordinates x and ϕ (see Fig. 41) have been formulated in page 81 to be

mẍ+ kx = 0 (2.201)

where

m =

∙
m1 +m2 m2R
m2R m2R

2 + I

¸
, k =

∙
2k 0
0 m2gR

¸
, x =

∙
x
ϕ

¸
, I =

2

5
m2r

2

(2.202)
At the instant t = 0, the link 1 was placed to the position shown in Fig. 42 and
released with the initial velocity equal to zero.

For the following data:
m1 = 2 kg
m2 = 1 kg
R = 0.1 m
r = .05 m
k = 1000 N/m
a = 0.01 m
Produce:
1. the natural frequencies of the system
2. the normalized natural modes
3. the differential equation of motion in terms of the normal coordinates
4. the equation motion of the system along the coordinates x and ϕ due to

the given initial conditions.
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A

Figure 40

1
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Figure 41
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y

a

o

Figure 42
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Solution

1. The natural frequencies and the natural modes

According to the given numerical data the moment of inertia of the ball, the
inertia matrix and the stuffiness matrix are

I =
2

5
· 1 · 0.052 = 0.001 kgm2

m =

∙
2 + 1 1 · 0.1
1 · 0.1 1 · 0.12 + 0.001

¸
=

∙
3.0 . 1
. 1 .0 11

¸
(2.203)

k =

∙
1000 0
0 1 · 10 · 0.1

¸
=

∙
1000.0 0
0 1.0

¸
According to 2.108 (page 102) one can write the following set of equations

(−ω2nm+ k)X = 0 (2.204)

where ω stands for the natural frequency and X is the corresponding natural mode.
Hence for the given numerical data we are getting∙ −3.0ω2n + 1000.0 −. 1ω2n

−. 1ω2n −.0 11ω2n + 1.0
¸ ∙

X
Φ

¸
=

∙
0
0

¸
(2.205)

This set of equations has non-zero solution if and only if its determinant is equal to
zero. Hence the equation for the natural frequencies is.¯̄̄̄∙ −3.0ω2n + 1000.0 −. 1ω2n

−. 1ω2n −.0 11ω2n + 1.0
¸¯̄̄̄
= .0 23ω4n − 14.0ω2n + 1000.0 = 0 (2.206)

Its roots: £
22. 936 −22. 936 9. 091 3 −9. 091 3 ¤

yield the wanted natural frequencies

ω1 = 9. 0913 ω2 = 22. 936 [s
−1] (2.207)

For ωn = ω1 = 9. 0913 the equations 2.205 become linearly dependent. Therefore,
one of the unknown can be chosen arbitrarily (e.g. X1 = 1) and the other may be
produced from the first equation of the set 2.205.

X1 = 1

−3.0X1ω
2
1 + 1000.0X1 − . 1ω21Φ1 = 0 (2.208)

Φ1 =
1

. 1 · 9.09132 − 3.0 · 9.09
2 + 1000.0) = 90.99

These two numbers form the first mode of vibrations corresponding to the first
natural frequency ω1.Similar consideration, carried out for the natural frequency
ω2 = 22. 936,yields the second mode.

X2 = 1

Φ2 =
1

. 1 · 22.9362
¡−3.0 · 22.9362 + 1000.0¢ = −10.991 (2.209)
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Now, one can create the modal matrix

X = [X1,X2] =

∙
1 1
90.99 −10.991

¸
(2.210)

In this case the modal matrix has two eigenvectors X1 and X2.

X1 =

∙
1
90.99

¸
;X2 =

∙
1
−10.991

¸
(2.211)

2. Normalization of the natural modes

According to 2.121 the normalization factor is

XT
nmXn = λ2n (2.212)

Hence

λ21 =
£
1 90. 99

¤ ∙ 3.0 . 1
. 1 .0 11

¸ ∙
1
90.99

¸
= 112. 27

λ1 =
√
112. 27 = 10. 596 (2.213)

Division of the eigenvector X1 by the factor λ1 yields the normalized mode Ξ1.

Ξ1 =
1

10. 596

∙
1
90.99

¸
=

∙
9. 4375× 10−2

8. 5872

¸
(2.214)

Similar procedure allows the second normalized mode to be obtained

λ22 =
£
1 −10.991 ¤ ∙ 3.0 . 1

. 1 .0 11

¸ ∙
1
−10.991

¸
= 2. 1306

λ2 =
√
2. 1306 = 1. 4597

Ξ2 =
1

1. 4597

∙
1
−10.991

¸
=

∙
. 68507
−7. 5296

¸
(2.215)

These two vectors forms the normalized modal matrix Ξ.

Ξ =

∙
9. 4375× 10−2 . 68507
8. 5872 −7. 5296

¸
(2.216)

The normalized eigenvectors must be orthogonal with respect to both the inertia
matrix and the stiffness matrix. Indeed.

ΞTmΞ =

=

∙
9. 4375× 10−2 8. 5872

. 68507 −7. 5296
¸ ∙

3.0 . 1
. 1 .0 11

¸ ∙
9. 4375× 10−2 . 68507
8. 5872 −7. 5296

¸
=

∙
1 0
0 1

¸
(2.217)
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and

ΞTkΞ =

=

∙
9. 4375× 10−2 8. 5872

. 68507 −7. 5296
¸ ∙

1000 0
0 1 · 10 · 0.1

¸ ∙
9. 4375× 10−2 . 68507
8. 5872 −7. 5296

¸
=

∙
82. 647 0
0 526. 02

¸
=

∙
(9. 091)2 0

0 (22. 935)2

¸
=

∙
ω21 0
0 ω22

¸
(2.218)

3. The differential equation of motion in terms of the normal coordinates

Introducing the substitution 2.131

x = Ξη (2.219)

that in the case considered has the following form∙
X
Φ

¸
= Ξη = Ξ

∙
η1
η2

¸
(2.220)

into 2.201 and premultiplying them from the left hand side by ΞT we are getting the
differential equations of motion in terms of the normal coordinates η.

(ΞTmΞ)η̈+(ΞTkΞ)η = 0 (2.221)

Taking advantage of the orthogonality conditions, the equations of motion are of the
following form ∙

1 0
0 1

¸
η̈ +

∙
(9. 091)2 0

0 (22. 935)2

¸
η = 0 (2.222)

or

η̈1 + (9. 091)
2 η1 = 0

η̈2 + (22. 935)
2 η2 = 0 (2.223)

The general solution of the above set of the differential equations, according to 1.36
is

η1 =
v01
ω1
sinω1t+ η01 cosω1t

η2 =
v02
ω2
sinω2t+ η02 cosω2t (2.224)

Where η01 and η02 stand for the initial position whereas v01 and v02 stand for the
initial velocity of the system along the normal coordinates. These initial conditions
must be formulated along the normal coordinates. It can be obtained by transforming
the initial conditions from the physical coordinates to the normal coordinates.∙

η01
η02

¸
= Ξ−1

∙
Xo

Φo

¸
= Ξ−1

∙
a
0

¸
=

∙
1.142 .1039
1.3024 −1.4313× 10−2

¸ ∙
0.01
0

¸
=

∙
.01142

1.3024× 10−2
¸

(2.225)
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v01
v02

¸
=

∙
0
0

¸
(2.226)

Introduction of the above initial conditions into the equations 2.224 results in motion
of the system along the normal coordinates

η1 = η01 cosω1t = .01142 cos 9.091t

η2 = η02 cosω2t = 1.3024× 10−2 cos 22.935t (2.227)

4. The equations of motion of the system along the coordinates x and ϕ

To produce equation of motion along the physical coordinates, one has to
transform the motion along the normal coordinates beck to the physical ones. Hence,
using the relationship 2.219, we are getting∙

X
Φ

¸
= Ξη =

∙
9. 4375× 10−2 . 68507
8. 5872 −7. 5296

¸ ∙
.01142 cos 9.091t
1.3024× 10−2 cos 22.935t

¸
=

=

∙
1. 0778× 10−3 cos 9. 091t+ 8. 9224× 10−3 cos 22. 935t
9. 8066× 10−2 cos 9. 091t− 9. 8066× 10−2 cos 22. 935t

¸
(2.228)

This motion is presented in Fig. 43 and 44
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Problem 31

1
A

B

C D

F=F  cos   to ω 

2

L

l
3

k cM, IA E,J

Figure 45

The rigid beam 1 of mass M , length L and the moment of inertia about
its point of rotation IA, is supported by means of the spring of stiffness k and the
damper of the damping coefficient c as shown in Fig. 45. The beam 2 is massless
and the Young’s modulus E and the second moment of area J determine its dynamic
properties. Its end D is fixed and the particle 3 of mass m is attached to the end C.

Derive an expression for the fixing moment and the fixing force at the point
D due to the exciting force F that is applied to the system at the point B.
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Problem 32

1 2
O1 O2

a

b

k1 k2

k

c

ωF  cos     t1 1 ωF  cos     t2 2

A

I O1m1 IO2m2G1
G2

s1 s2

Figure 46

The two rods, 1 and 2, are suspended in the vertical plane as shown in Fig. 46.
Their mass and their moment of inertia about their points of rotation are respectively
m1, IO1, and m2, IO2. These rods are connected to each other by means of springs
of the stiffness k, k1, k2 and as well as the damper of the damping coefficient c. The
centres of gravity of these rods are denoted by G1 and G2 respectively. Vibrations of
the system are excited by the two harmonic forces of amplitudes F1, F2 and frequencies
ω1 and ω2.

Produce
1. the differential equation of the small vibrations of the system in the matrix form

Answer:
Mẍ+Cẋ+Kx = F

M =

∙
Io1 0
0 Io2

¸
; C =

∙
ca2 −ca2
−ca2 ca2

¸
; K =

∙
k1a

2 + kb2 +m1gs1 −kb2
−kb2 k2a

2 + kb2 +m2gs2

¸
;

x =

∙
ϕ1
ϕ2

¸
; F =

∙
F1b
0

¸
cosω1t+

∙
0
−F2b

¸
cosω2t

2. the expression for the forced vibrations of the rods
Answer:

X = X1 +X2

X1 - particular solutionof equationMẍ+Cẋ+Kx =
∙
F1b
0

¸
cosω1t

X2 - particular solutionof equationMẍ+Cẋ+Kx =
∙

0
−F2b

¸
cosω2t

3. the expression for the dynamic reaction at the point A.
Answer:

RA = Φ2ak2; Φ2 - the lower element of the matrix X
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Problem 33

A
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B
C 

c1

k1

k2

c2

m2

D

m1,IAMm

a 

b

h 
µω
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2

3

Figure 47

The rigid beam 1 (see Fig. 47) is hinged at the point A and is supported at
the point C by means of the spring of stiffness k1 and the damper of the damping
coefficient c1. Its mass and its moment of inertia about A are m1 and IA respectively.
The motor 3 is mounted on this beam. It can be approximated by a particle of the
mass M that is concentrated at the point G that is located by the dimensions h and
a. The rotor of this motor rotates with the constant velocity ω. Its mass is equal
to m and its unbalance is µ. To attenuate the vibrations of the beam the block 2
of mass m2 was attached. The damping coefficient of the damper between the beam
and the block is denoted by c2 and the stiffness of the supporting spring in denoted
by k2.

Produce
1. the differential equation of motion of the system and present it in the standard
matrix form.

Answer:
Mẍ+Cẋ+Kx = F

M =

∙
IA +M(h2 + a2) 0

0 m2

¸
; C =

∙
c1b

2 + c2a
2 −c2a

−c2a c2

¸
; K =

∙
k1b 0
0 k2

¸
;

x =

∙
α
x

¸
; F =

∙
mµω2

√
h2 + a2

0

¸
cosωt
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α - the angular displacement of the beam1; x - the linear displacement of the block
2
2. Produce the expression for the interaction forces at the point A and D.
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Problem 34

l l 

C D A B

l 

k

α 

k

β

F

G 

Figure 48

Three uniform platforms each of the length l, the mass m and the moment
of inertia about axis through its centre of gravity IG are hinged together to form a
bridge that is shown in Fig. 48. This bridge is supported by means of two springs
each of the stiffness k. This system has two degree of freedom and the two generalized
coordinates are denoted by α and β. There is an excitation force F applied at the
hinge C. This force can be adopted in the following form

F = Fo cosωt

Produce:
1. the differential equations of motion of the system and present them in the standard
form

Answer:
Mẍ+Kx = F

M =

∙
2
3
−1
6−1

6
2
3

¸
ml2; K =

∙
1 0
0 1

¸
kl2; x =

∙
α
β

¸
; F =

∙
0
Fol

¸
cosωt

2. the equation for the natural frequencies of the system
Answer:

|K− 1ωn| = 0
3. the expression for the amplitude of the forced vibrations of the system

Answer:

X = [−ω2M+K]
−1
∙
0
Fol

¸
cosωt =

∙
A
B

¸
4. the expression for the interaction force between the spring attached to the hinge
B and the ground

Answer:
R = Akl cosωt
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Problem 35
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Figure 49

Figure. 49 shows the physical model of a trolley. It was modelled as a system
with two degree of freedom. Its position is determined by two generalized coordinates
x and ϕ. The moment of inertia of he trolley about the point A is denoted by IA and
its mass by m1. The dynamic properties of the shock-absorber are approximated by
the spring of stiffness k and damper of the damping coefficient c. Mass of the wheels
2 are denoted by m and the stiffness of its tire is k1. Motion of the trolley is excited
by roughnees of the road. It causes motion of the point B according to the following
function.

y = A sinωt

Produce:
1. the differential equation of motion of the system
2. the equation for the natural frequencies of the system
3. the expression for the amplitudes of the steady state vibration of the system
4. the expression for the amplitude of the interaction force between the tire

and suface of the road..
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Problem 36

c1 
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Figure 50

In Fig. 50 the physical model of a winch is shown. The blocks 1 and 3 are
rigid and their masses are respectively m1 and m3 respectively. The rigid pulley 2
has radius r, mass m2 and the moment of inertia about its axis of rotation I2. The
elastic properties of the rope 4 are modeled by two springs of stiffness k1 and k2. The
point A moves with respect to the axis y according to the following equation.

y = a cosωt

Produce:
1. the differential equation of motion of the system and present it in the following
matrix form.

Mẍ+Cẋ+Kx = F
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Answer:

M =

⎡⎣ m1 0 0
0 m2 +m3 0
0 0 I2

⎤⎦ ; C =

⎡⎣ c1 0 0
0 c3 0
0 0 0

⎤⎦
K =

⎡⎣ k1 −k1 −k1r
−k1 k1 + k2 + k3 k1r − k2r
−k1r k1r − k2r (k1 + k2) r

2

⎤⎦ F =

⎡⎣ 0
ak3
0

⎤⎦ cosωt; x =

⎡⎣ x1
x2
ϕ

⎤⎦
x1 - the linear displacement of the block 1
x2 - the linear displacement of the pulley 2 and the block 3
ϕ - the angular displacement of the pulley 2
2. the expression for the amplitudes of the forced vibrations of the system

Answer:
The particular solution xp of the equationMẍ+Cẋ+Kx = F
The first element xp1 of the matrix xp represents displacement of the block 1
3. the expression for the interaction force at point B.

Answer
RB = c1ẋp1



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 136

Problem 37

k1 k2 
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Figure 51

Figure 51 shows the physical model of a compressor. The disks of moment of
inertia I1, I2, and I3 are connected to each other by means of the massless shafts that
the torsional stiffness are k1, k2 and k3 respectively. The shaft k1 is connected to the
shaft k2 by means of the gear of ratio i = D1/D2. There is a torque T3 applied to the
disk I3. It can be approximated by the following function

T3 = T cosωt

Produce:
1. the differential equation of motion of the system and present it in the following
matrix form.

Mẍ+Cẋ+Kx = F

2. the expression for the amplitudes of the forced vibrations of the system
3. the expression for the toque transmitted through the shaft k1.
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Solution

k1 k2 

I1 

k3 

I2 I3 

D1 

D2 

T3 

ϕ1 

ϕ2 
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ϕ22 

ϕ3 

ϕ1 

ϕ11 

ϕ22 

ϕ2 
ϕ3 T3 

F12 

F21 

Figure 52

To produce the equations of motion of the system one may split it into five
rigid bodies (Newton approach) and write the following set of equations

I1ϕ̈1 = −k1ϕ1 + k1ϕ11

0 = −k1ϕ11 + k1ϕ1 + F12
D1

2

0 = −k2ϕ22 + k2ϕ2 − F21
D2

2
(2.229)

I2ϕ̈2 = −(k2 + k3)ϕ2 + k2ϕ22 + k3ϕ3
I3ϕ̈3 = −k3ϕ3 + k3ϕ2 + T3

where F12 F21 stand for the interaction forces between the rear D1 and D2.
In the above equations not all variables are independent.

ϕ22 = iϕ11 (2.230)

Hence the equations can be rewritten as follows

I1ϕ̈1 = −k1ϕ1 + k1ϕ11

0 = −k1ϕ11 + k1ϕ1 + F12
D1

2

0 = −k2iϕ11 + k2ϕ2 − F21
D2

2
(2.231)

I2ϕ̈2 = −(k2 + k3)ϕ2 + k2iϕ11 + k3ϕ3
I3ϕ̈3 = −k3ϕ3 + k3ϕ2 + T3

According to the third Newton’s law we have

F12 = F21 (2.232)
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Hence the second and third equation yields

F12 =
2

D1
(k1ϕ11 − k1ϕ1) =

2

D2
(−k2iϕ11 + k2ϕ2) = F21 (2.233)

k1ϕ11 − k1ϕ1 =
D1

D2
(−k2iϕ11 + k2ϕ2)

The equation 2.233 allows the angular displacement ϕ11 to be expressed in terms of
the displacements ϕ1and ϕ2.

ϕ11 =
k1

k1 + k2i2
ϕ1 +

ik2
k1 + k2i2

ϕ2 (2.234)

Introduction of this relationship into the first, second and fifth equation of the set
2.231 one can get

I1ϕ̈1 = −k1ϕ1 +
k21

k1 + k2i2
ϕ1 +

ik1k2
k1 + k2i2

ϕ2

I2ϕ̈2 = −(k2 + k3)ϕ2 +
k1k2i

k1 + k2i2
ϕ1 +

i2k22
k1 + k2i2

ϕ2 + k3ϕ3 (2.235)

I3ϕ̈3 = −k3ϕ3 + k3ϕ2 + T3

or µ
1

i2
I1

¶
(iϕ̈1) = −ke (iϕ1) + keϕ2

I2ϕ̈2 = −keϕ2 − k3ϕ2 + ke (iϕ1) + k3ϕ3 (2.236)

I3ϕ̈3 = −k3ϕ3 + k3ϕ2 + T3

where

ke =
k1k2

k1 + i2k2
(2.237)

The above set of equations can be now presented in the matrix form

Mẍ+Cẋ+Kx = F (2.238)

where

M =

⎡⎣ 1
i2
I1

I2
I3

⎤⎦ ; C = 0; K =

⎡⎣ ke −ke 0
−ke ke + k3 −k3
0 −k3 k3

⎤⎦ ; x =
⎡⎣ iϕ1

ϕ2
ϕ3

⎤⎦

F =

⎡⎣ 0
0

T cosωt

⎤⎦ (2.239)

The same results one can get by means of the Lagrange’s equations
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The kinetic energy function and the potential energy function of the system
considered are

T =
1

2
I1ϕ̇

2
1 +

1

2
I2ϕ̇

2
2 +

1

2
I3ϕ̇

2
3

V =
1

2
k1(ϕ11 − ϕ1)

2 +
1

2
k2(ϕ2 − ϕ22)

2 +
1

2
k3(ϕ3 − ϕ2)

2 =

=
1

2
k1(ϕ11 − ϕ1)

2 +
1

2
k2(ϕ2 − iϕ11)

2 +
1

2
k3(ϕ3 − ϕ2)

2

Hence

d

dt

∂T

∂ϕ̇1
= I1ϕ̈1

d

dt

∂T

∂ϕ̇2
= I2ϕ̈2

d

dt

∂T

∂ϕ̇3
= I3ϕ̈3

∂T

∂ϕ1
= 0;

∂T

∂ϕ2
= 0;

∂T

∂ϕ3
= 0

∂V

∂ϕ1
=

1

2
k12(ϕ11 − ϕ1)

µ
∂ϕ11
∂ϕ1

− 1
¶
+
1

2
k22(ϕ2 − iϕ11)

µ
−i∂ϕ11

∂ϕ1

¶
=

= i2keϕ1 − ikeϕ2

∂V

∂ϕ2
=

1

2
k12(ϕ11 − ϕ1)

µ
∂ϕ11
∂ϕ2

¶
+
1

2
k22(ϕ2 − iϕ11)

µ
1− i

∂ϕ11
∂ϕ2

¶
+
1

2
k32(ϕ3 − ϕ2) (−1) =

= −keiϕ1 + (ke + k3)ϕ2 − keϕ3

∂V

∂ϕ3
=

1

2
k32(ϕ3 − ϕ2) (1) =

= −k3ϕ2 + k3ϕ3

The virtual work produced by the impressed forces acting on the system is

δW = (0)ϕ1 + (0)ϕ2 + (T3)ϕ3

Introduction of the above expressions into the following Lagrange’s equations

d

dt

∂T

∂ϕ̇1
− ∂T

∂ϕ1
+

∂V

∂ϕ1
= Q1

d

dt

∂T

∂ϕ̇2
− ∂T

∂ϕ2
+

∂V

∂ϕ2
= Q2 (2.240)

d

dt

∂T

∂ϕ̇3
− ∂T

∂ϕ3
+

∂V

∂ϕ3
= Q3
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yields the wanted equations of motion of the system considered

I1ϕ̈1 + keϕ1 − ikeϕ2 = 0

I2ϕ̈2 +−keiϕ1 + (ke + k3)ϕ2 − keϕ3 = 0

I3ϕ̈3 +−k3ϕ2 + k3ϕ3 = T3

or µ
I1
i2

¶
(ϕ̈1i) + ke (ϕ1i)− keϕ2 = 0

I2ϕ̈2 − ke (ϕ1i) + (ke + k3)ϕ2 − keϕ3 = 0 (2.241)

I3ϕ̈3 +−k3ϕ2 + k3ϕ3 = T3

They are identical with the equation 2.239.
It is easy to see that precisely the same equations possesses the system pre-

sented in Fig. 53

  

k1 k2 

I1r=I1  / i2

k3 

I2 I3 
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T3 

ϕ1 

ϕ2 
ϕ3 

I1 

k1r=k1  / i2
ϕ1r= iϕ1  

Figure 53

In this figure

ϕ1r = iϕ1; I1r =
I1
i2
; k1r =

k1
i2

(2.242)

stands for so called reduced displacement, reduced moment of inertia and reduced
stiffness. The equivalent stiffness of the shaft assembled of the shaft k2 and k1r can
be produced from the following equation

1

ke
=

1

k1r
+
1

k2
=
1
k1
i2

+
1

k2
(2.243)

It is

ke =
k1k2

k1 + i2k2
(2.244)
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Hence, the equations of motion of the system presented in Fig. 53 are as followsµ
I1
i2

¶
(ϕ̈1i) + ke (ϕ1i)− keϕ2 = 0

I2ϕ̈2 − ke (ϕ1i) + (ke + k3)ϕ2 − keϕ3 = 0 (2.245)

I3ϕ̈3 +−k3ϕ2 + k3ϕ3 = T3
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Problem 38
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Figure 54

Two rigid bodies 1 and 2 were hinged together at the point A to form the
double pendulum whose physical model is shown in Fig.??. These bodies possess
masses m1 and m2 and the moments of inertia about the axis through their centers
of gravity (G1, G2) are I1 and I2 respectively. The system has two degrees of freedom
and the generalized coordinates are denoted by q1 and q2. Vibrations of the pendulum
about the horizontal axis Z are excited by the harmonic moment M applied to the
body 1.

Produce:
1. the differential equation of small oscillations of the pendulum and present it in the
following matrix form

Mẍ+Cẋ+Kx = F
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Take advantage of Lagrange’s equations.
Answer:

x =

∙
q1
q2

¸
; M =

∙
IG1 +m1c

2
1 + IG2 +m2(l + c2)

2 IG2 +m2c2(l + c2)
IG2 +m2c2(l + c2) IG2m2c

2
2

¸
;

K =

∙
m1gc1 +m2g(l + c2) m2gc2

m2gc2 m2gc2 + 2kb
2

¸
; C =

∙
0 0
0 2ca2

¸
; F =

∙
Mo

0

¸
2. the expression for the amplitudes of the forced vibrations of the pendulum
3. the expression for the interaction force between the damper and the body 1 at the
point B.
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Problem 39
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Figure 55

The assembly of the ventilatorV and its baseB (see Fig. 55) can be considered
as a rigid body. This assembly is free to rotate about the horizontal axis X-X and is
kept in the horizontal position by means of two springs each of stiffness kv and two
dampers each of the damping coefficient cv . Its moment of inertia about the axis
X-X is IX . The angular displacement α defines the instantaneous position of this
assembly.

The rotor R of the ventilator V possesses a mass mR and rotates with a
constant angular velocity Ω. Its centre of gravity Gr is located by the distances a
and b. This rotor is unbalanced and its centre of gravity is off from its axis of rotation
by µ.

This assembly is furnished with the dynamic absorber of vibrations. It is made
of the block D of mass md , the spring of stiffness kd and the damper of the damping
coefficient cd . The block D can translate along the inertial axis x only.

Produce:
1. The differential equation of small oscillations of the system shown in Fig.1 and
present it in the following matrix form

Mẍ+Cẋ+Kx = F
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Answer.

M =

∙
Ix 0
0 m

¸
; C =

∙
2cve

2 + cdl
2 −cdl

−cdl cd

¸
; K =

∙
2kvd

2 + kdl
2 −kdl

−kdl kd

¸
;

x =

∙
α
x

¸
; F =

∙
mRµΩ

2
√
a2 + b2

0

¸
cosΩt

2. The expression for the amplitudes of the forced vibrations of the system along the
coordinates x and α
3. The expression for the force transmitted to foundation by the damper cv .
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Problem 40
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Figure 56

The uniform rod 1 of mass m and length l shown in Fig. 56 is hinged at the
point A to the support 5. The support 5 moves along the horizontal axis Y according
to the following function

Y = a cosωt

The lower end of the rod is connected to the blocks 2 and 3 by means of two springs 4
each of stiffness k. The blocks mass is m2 and m3 respectively. The system performs
small oscillation in the vertical plane XY . It possesses three degrees of freedom and
the three independent coordinates are denoted by y2 and y3.

Produce:
1. The differential equation of small oscillations of the and present it in the following
matrix form.

Mẍ+Cẋ+Kx = F

2. The expression for the amplitudes of the forced vibrations of the system.
3. The expression for the driving force that must be applied to the point A in order
to assure the assumed motion Y (t).
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Solution
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Figure 57

Motion of the system is governed by the Lagrange equations.

d

dt

∂T

∂α̇
− ∂T

∂α
+

∂V

∂α
= 0

d

dt

∂T

∂ẏ2
− ∂T

∂y2
+

∂V

∂y2
= 0 (2.246)

d

dt

∂T

∂ẏ3
− ∂T

∂y3
+

∂V

∂y3
= 0

To produce the kinetic energy function T associated with the the rod 1, let us develop
the position vector of its centre of gravity G1.

rG1 = J(Y +
l

2
sinα) + I(

l

2
cosα) (2.247)

Its first derivative provide us with the absolute velocity of the centre of gravity.

ṙG1 = J(Ẏ +
l

2
α̇ cosα) + I(− l

2
α̇ sinα) (2.248)

Hence, the kinetic energy of the rod is

T1 =
1

2
m

µ
(Ẏ +

l

2
α̇ cosα)2 + (− l

2
α̇ sinα)2

¶
+
1

2
IG1α̇

2 (2.249)
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Since the kinetic energy of the blocks 2 and 3 is as follows

T2 =
1

2
m2ẏ

2
2 T3 =

1

2
m3ẏ

2
3 (2.250)

the total kinetic energy of the whole system is

T = T1+T2+T3 =
1

2
mẎ 2+

1

2
mlẎ α̇ cosα+

1

8
ml2α̇2+

1

2
IG1α̇

2+
1

2
m2ẏ

2
2+
1

2
m3ẏ

2
3 (2.251)

The potential energy of the springs 4 is

Vs =
1

2
k2(y2 − Y − l sinα)2 +

1

2
k3(−y3 + Y + l sinα)2 (2.252)

The potential energy due to gravitation is

Vg = −mgrG1Y = −mg
l

2
cosα (2.253)

Hence, the total potential energy is

V = Vs+Vg =
1

2
k2(y2−Y − l sinα)2+

1

2
k3(−y3+Y + l sinα)2−mg

l

2
cosα (2.254)

Introducing the expressions 2.251 and 2.254 into equations 2.246 one can get the
required equation in the following matrix form.

Mẍ+Cẋ+Kx = F cosωt (2.255)

where

M =

⎡⎣ IG +
1
4
ml2 0 0

0 m2 0
0 0 m3

⎤⎦ ; C = 0; K =

⎡⎣ 1
2
mgl + k2l

2 + k3l
2 −k2l −k3l

−k2l k2 0
−k3l 0 k3

⎤⎦
F =

⎡⎣ −12mŸ − (k2l + k3l)Y
k2Y
k3Y

⎤⎦ =
⎡⎣ +1

2
mlaω2 − a (k2l + k3l)

k2a
k3a

⎤⎦ ; x =

⎡⎣ α
y2
y3

⎤⎦(2.256)
To verify the above equations of motion let us employ the Newton-Euler

method for modeling of the system considered. The free body diagrams are shown in
Fig. 58



ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEM 149

2 

X 

3 

Y 

1 
 

 α 
 

l 

A 

B 

G1 
 

y3 y2 
 

4 

Y 5 

RAY 

RAX 

R2Y R2Y R3Y R3Y 

G1

Figure 58

For the rod one can produce the following two equations

IGα̈ = −1
2
RAY l +

1

2
R2Y l +

1

2
R3Y l

maG1Y = RAY +R2Y +R3Y (2.257)

The second equation can be used for determination of the unknown interaction force
RAY .

RAY = maG1Y −R2Y −R3Y (2.258)

Introduction of the above expression into the first equation of 2.257 gives

IGα̈ = −1
2
lmaG1Y +R2Y l +R3Y l (2.259)

In the latest equation aG1Y stands for the component Y of the absolute acceleration of
the centre of gravity G1. It can be obtained by differentiation of the absolute velocity
vector 2.247.

r̈G1 = J(Ÿ +
l

2
α̈ cosα− l

2
α̇2 sinα) + I(− l

2
α̈ sinα− l

2
α̇2 cosα) (2.260)

Hence

aG1Y = Ÿ +
l

2
α̈ cosα− l

2
α̇2 sinα (2.261)

After linearization

aG1Y = Ÿ +
l

2
α̈ (2.262)
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Introduction of 2.262 into 2.259 results in the following equation

IGα̈ = −1
2
lm(Ÿ +

l

2
α̈) +R2Y l +R3Y l (2.263)

The interaction forces between the rod and the springs are can be expressed as follows

R2Y = k2(y2 − Y − αl); R3Y = k3(y3 − Y − αl) (2.264)

Introducing them into equation 2.263 one can obtain

(IG +
1

4
ml2)α̈+ k2l

2α+ k3l
2α− k2ly2 − k3ly3 = −1

2
lmŸ − k2lY − k3lY (2.265)

The Newton’s law if apply to the blocks 2 and 3 yields

m2ÿ2 = −R2Y
m3ÿ3 = −R3Y (2.266)

Since the interaction forces are defined by 2.264 we have

m2ÿ2 + k2y2 − k2lα = k2Y

m3ÿ3 + k3y3 + k3lα = k3Y (2.267)

Hence, the governing equations are

(IG +
1

4
ml2)α̈+ k2l

2α+ k3l
2α− k2ly2 − k3ly3 = −1

2
lmŸ − k2lY − k3lY

m2ÿ2 + k2y2 − k2lα = k2Y (2.268)

m3ÿ3 + k3y3 + k3lα = k3Y

They are identical with 2.255.

Mẍ+Kx = F cosωt (2.269)

The amplitudes of the forced vibration could be obtained from the particular solution
of the above equation. It can be predicted as

x = A cosωt (2.270)

Introducing it into the equation of motion we have

(−ω2M+K)A = F (2.271)

The wanted vector of the amplitudes of the system forced vibrations is

A =(−ω2M+K)−1F =

⎡⎣ Aα

Ay2

Ay3

⎤⎦ (2.272)
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Now, the interaction force RAY can be produced as an explicit function of time from
2.258

RAY = maG1Y −R2Y −R3Y

= m

µ
Ÿ +

l

2
α̈

¶
− k2(y2 − Y − αl)− k3(y3 − Y − αl)

= m

µ
−aω2 − l

2
Aαω

2

¶
cosωt+ (2.273)

−k2(Ay2 − a−Aαl) cosωt− k3(Ay3 − a−Aαl) cosωt

=

µ
m

µ
−a− l

2
Aα

¶
ω2 − k2(Ay2 − a−Aαl)− k3(Ay3 − a−Aαl)

¶
cosωt

= |RAY | cosωt
where |RAY | =

¯̄
m
¡−a− l

2
Aα

¢
ω2 − k2(Ay2 − a−Aαl)− k3(Ay3 − a−Aαl)

¯̄
is the amplitude of the interaction force.

2.3 ENGINEERING APPLICATIONS

2.3.1 Balancing of rotors
Let us consider a rigid rotor that rotates with an angular velocity ω about the axis
A−A (see Fig. 59).
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Figure 59

In a general case, due to the limited accuracy of manufacturing, the centres
of gravity of the individual cross-sections do not have to coincide with this axis of
rotation. They are distributed along, usually unknown, line B −B. Its follows that
due to rotation of this body at each cross-section i there exists the centrifugal forceUi

(see Fig. 59). Each of this forces can be replaced by two forces Ui1 and Ui2 acting in
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two arbitrarily chosen planes. Each of them is perpendicular to the axis of rotation,
therefore their resultants U1 and U2 are perpendicular to the axis of rotation too.
Hence, one can eliminate this unbalance of the rotor by means of two weights of
mass m1 and m2 attached at such a position that the centrifugal forces F1 and F2
balance the resultant forces U1 and U2. The process of searching for magnitude of
the unbalance forces U1 and U2 and their phases ϕ1 and ϕ2 is called balancing. The
balancing of a rotor can be performed with help of a specially design machines before
it is installed or can be carried out after its installation ’in its own bearings’. The
second approach for balancing rotors is consider in this section.
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Figure 60

Let us consider the rotating machine shown in Fig. 60. According to the
above discussion, if the rotor of this machine can be approximated by a rigid body,
the unbalance forces can be represented by forces U1and U2 in two arbitrarily chosen
plane. These two arbitrarily chosen planes,denoted in Fig. 60 by nubers 1 and 2, are
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called balancing plane. Although the selection of the balancing planes is arbitrary,
there are numerous practical considerations for proper selection. For long rotors, for
example, the balancing planes should be chosen as far apart as possible. Furthermore,
these plane should offer an easy access and allow additional weights to be attached.
These unbalance forces excite vibrations of this machine. Let us arrange for these
vibrations to be recorded in two arbitrarily chosen planes. These planes, marked in
Fig. 60 by numbers 3 and 4, are called measurement planes. Let a3 and a4 be the
complex displacements measured in the measurement plasen along the coordinates
x3and x4 with help of the two transducers 3 and 4. The transducer 5, which is
called key phasor, creates a timing reference mark on the rotor. This mark, shown
in Fig. 60 by N, allows the phases of the unbalance forces (ϕ1, ϕ2) and the phases
of the recorded displacements (β1, β2) to be measured. The equation 2.96 offers
the relationship between the unknown unbalance forces U1and U2 and the measured
displacements a3and a4.∙

a3
a4

¸
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸ ∙
U1
U2

¸
(2.274)

where

a3 = a3oe
iβ3 , a4 = a4oe

iβ4, U1 = U1oe
iϕ1, U2 = U2oe

iϕ2 (2.275)

If the transfer functions Ri,j(iω) would be known, this relation would allow the un-
know magnitudes of the unbalance as well as their phases to be determined. In order
to identify the transfer functions two additional tests are required.
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An additionl trial weight of mass m(1) (see Fig 61) is attached in the balancing
plane 1 at the known (with respect to the key phasor’s mark) phase ϕ(1) and the know
distance µ(1). The system is now excited by both the residual unbalance forces (U1
and U2) and the centrifugal force produced by the trial weight U (1). The amplitude
of this force U (1) is

U (1)
o = m(1)µ(1)ω2 (2.276)

The response of the system is recorded in both measurment planes so the amplitudes
a
(1)
3o and a

(1)
4o as well as the phases β

(1)
3 and β(1)4 can be obtained. There is the following

relationship between the measured parameters and the transfer functions."
a
(1)
3

a
(1)
4

#
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸ ∙
U1 + U (1)

U2

¸
(2.277)

a
(1)
3 = a

(1)
3o e

iβ
(1)
3 , a

(1)
4 = a

(1)
4o e

iβ
(1)
4 , U1 = U1oe

iϕ1, U2 = U2oe
iϕ2 , U (1) = U (1)

o eiϕ
(1)

(2.278)
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An additional trial weight of massm(2) (see Fig 62) is attached in the balancing
plane 2 at the known (with respect to the key phasor’s mark) phase ϕ(2) and the know
distance µ(2). The system is now excited by both the residual unbalance forces (U1
and U2) and the centrifugal force produced by the trial weight U (2). The amplitude
of this force U (2) is

U (2)
o = m(2)µ(2)ω2 (2.279)

The response of the system is recorded in both measurement planes so the amplitudes
a
(2)
3o and a

(2)
4o as well as the phases β

(2)
3 and β(2)4 can be obtained. There is the following



ENGINEERING APPLICATIONS 155

relationship between the measured parameters and the transfer functions."
a
(2)
3

a
(2)
4

#
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸ ∙
U1
U2 + U (2)

¸
(2.280)

a
(2)
3 = a

(2)
3o e

iβ
(2)
3 , a

(2)
4 = a

(2)
4o e

iβ
(2)
4 , U1 = U1oe

iϕ1, U2 = U2oe
iϕ2 , U (2) = U (2)

o eiϕ
(2)

(2.281)
The formulated equations 2.274, 2.277 and 2.280 allow the unknown transfer functions
and the wanted unbalances U1 and U2 to be computed. To achieve that let us subtract
the equations 2.274 from 2.277Ã"

a
(1)
3

a
(1)
4

#
−
∙
a3
a4

¸!
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸µ∙
U1 + U (1)

U2

¸
−
∙
U1
U2

¸¶
"
a
(1)
3 − a3
a
(1)
4 − a4

#
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸ ∙
U (1)

0

¸
"
a
(1)
3 − a3
a
(1)
4 − a4

#
=

∙
R31(iω)U

(1)

R41(iω)U
(1)

¸

R31(iω) =
a
(1)
3 − a3
U (1)

=
a
(1)
3o e

iβ
(1)
3 − a3oe

iβ3

U
(1)
o eiϕ(1)

R41(iω) =
a
(1)
4 − a4
U (1)

=
a
(1)
4o e

iβ
(1)
4 − a4oe

iβ4

U
(1)
o eiϕ(1)

(2.282)

Similarly, if one subtracts equations 2.274 from 2.280 one can get

R32(iω) =
a
(2)
3 − a3
U (2)

=
a
(2)
3o e

iβ
(2)
3 − a3oe

iβ3

U
(2)
o eiϕ(2)

R42(iω) =
a
(2)
4 − a4
U (2)

=
a
(2)
4o e

iβ
(2)
4 − a4oe

iβ4

U
(2)
o eiϕ(2)

(2.283)

Now, the wanted complex imbalances U1 and U2 in the plane 1 and 2 may be computed
from the equation 2.274∙

U1
U2

¸
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸−1 ∙
a3
a4

¸
(2.284)

where a3 and a4 represent the know response of the system without the additional
weights. ∙

U1
U2

¸
=

∙
R31(iω) R32(iω)
R41(iω) R42(iω)

¸−1 ∙
a3oe

iβ3

a4oe
iβ4

¸
=

∙
U1oe

iϕ1

U2oe
iϕ2

¸
(2.285)
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The amplitudes U1o and U2o determine the weightsm1 andm2 that should be attached
in the balancing planes

m1 =
U1
r1ω2

m2 =
U2
r2ω2

(2.286)

These weights, to balance the rotor, should be place at angular position (see Fig. 63)

β1 = 180o + ϕ1
β2 = 180o + ϕ2 (2.287)
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2.3.2 Dynamic absorber of vibrations
Let us consider vibration of the ventilator shown in Fig. 64a). Vibration of this
ventilator are due to the imbalance u if its rotor.
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Figure 64

Let us assume that the system has the following parameters:
M = 100 kg - total mass of the ventilator
mr = 20 kg - mass of rotor of the ventilator
K = 9000000 N/m - stiffness of the supporting beam
ω = 314 rad/s the ventilator’s operating speed
µ = .0001 m - distance between the axis of rotation and the centre of gravity
u = mrµ = 20 · .0001 = .00 2 kgm - imbalance of the rotor

The natural frequency of the system is

ωn =

r
K

M
=

r
9000000

100
= 300 (2.288)

Hence, within the range of the rotor angular speed 0 < ω < 500 the system can be
approximated by system with one degree of freedom. Its physical model is shown in
Fig. 64b). The following mathematical model

Mẍ+Kx = mrµω
2 cosωt (2.289)

ẍ+ ω2nx = q cosωt (2.290)

q =
u

M
ω2 =

0.002

100
ω2 = .0000 2ω2 (2.291)

allows the amplitude of the forced vibrations of the ventilator A to be predicted.

A =

¯̄̄̄
q

ω2n − ω2

¯̄̄̄
=

¯̄̄̄
.0000 2ω2

3002 − ω2

¯̄̄̄
(2.292)

Its values, as a function of the angular speed of the rotor is shown in Fig. 65
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As it can be seen from this diagram, the ventilator develops large vibration in
vicinity of its working speed ω = 314 rad/s and has to pass the critical speed during
the run up. Such a solution is not acceptable. One of a possible way of reducing
these vibration is to furnish the ventilator with the absorber of vibration shown in
fig 66
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It comprises block of mass m, elastic element of stiffness k and damper of the
damping coefficient c. Application of the Newton’s - Euler’s method, results in the
following mathematical model.

Mẍ+ (K + k)x− ky + cẋ− cẏ = uω2cosωt

mÿ − kx+ ky − cẋ+ cẏ = 0 (2.293)
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Its matrix form is∙
M 0
0 m

¸ ∙
ẍ
ÿ

¸
+

∙
+c −c
−c +c

¸ ∙
ẋ
ẏ

¸
+

∙
K + k −k
−k +k

¸ ∙
x
y

¸
=

∙
uω2 cosωt
0

¸
(2.294)

To analyze the forced vibrations let us introduce the complex excitation∙
M 0
0 m

¸ ∙
ẍ
ÿ

¸
+

∙
+c −c
−c +c

¸ ∙
ẋ
ẏ

¸
+

∙
K + k −k
−k +k

¸ ∙
x
y

¸
=

=

∙
uω2 cosωt+ iuω2 sinωt
0

¸
=

∙
uω2eiωt

0

¸
=

∙
uω2

0

¸
eiωt

(2.295)

Introducing notations

m =

∙
M 0
0 m

¸
; c =

∙
+c −c
−c +c

¸
; k =

∙
K + k −k
−k +k

¸
; q =

∙
uω2

0

¸
; x =

∙
x
y

¸
(2.296)

The above equations takes form

mẍ+ cẋ+ kx = qeiωt (2.297)

If one predicts the particular solution as

x = Aeiωt (2.298)

and than introduces it into the equation 2.297 one obtains the formula for the am-
plitude of the forced vibration

A =
¯̄
(−ω2m+iωc+ k)−1q¯̄ (2.299)

Remarkable results we are getting if parameters k and m of the absorber fulfill the
following relationship r

k

m
= ω = 314 (2.300)

To show it let us assume
m = 25 kg
and compute the value of the stiffness k from the formula 2.300
k = mω2 = 25 · 3142 = 2. 4649× 106 N/m

Introduction of this data into equation 2.299 and the zero damping results in the
following response A1 and A2 of the system along the coordinates x and y respectively.

A =

∙
A1
A2

¸
=¯̄̄̄

¯
µ
−ω2

∙
100 0
0 25

¸
+ iω

∙
0 0
0 0

¸
+

∙
11.5 −2. 46
−2. 46 2. 46

¸
106
¶−1 ∙

0.002 · ω2
0

¸¯̄̄̄
¯

(2.301)

Amplitude A1, representing vibrations of the ventilator, as a function of the angular
speed of its rotor is presented in Fig. 67:
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One can notice that the amplitude of vibration for the working speed ω = 314
rad/s is equal to zero. But the ventilator still has to pass resonance in vicinity of
ω = 240 rad/s. To improve the dynamic response, let us analyze the influence of the
damping coefficient c. ∙

A1
A2

¸
=

=

µ
−ω2

∙
100 0
0 25

¸
+ iω

∙
c c
c c

¸
103 +

∙
11.5 −2. 46
−2. 46 2. 46

¸
106
¶−1 ∙

0.002 · ω2
0

¸
(2.302)

The amplitudes of the forced vibration of the ventilator for different values of the
damping coefficient c, computed according to the formula 2.302 are collected in the
Table 1. It can be noticed, that by increasing the damping coefficient c one can lower
amplitude of vibrations in all region of frequency. The best results of attenuation of
vibrations can be achieved if the two local maxima are equal to each other. This case
is shown in the last raw of the table 1. Application of the absorber of vibrations offers
a safe operation in region of the angular speed 0 < ω < 500 rad/s. The amplitude is
less than 0.00004 m. Damping coefficient lager then 5000 results in increment of the
amplitude of the ventilator’s forced vibrations. If the damping tends to infinity, The
relative motion is ceased and the system behaves like the undamped system with one
degree of freedom.
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.

Table 1

m = 25
k = 2. 46× 106
c = 0
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Chapter 3

VIBRATION OF CONTINUOUS SYSTEMS

3.1 MODELLING OF CONTINUOUS SYSTEMS

3.1.1 Modelling of strings, rods and shafts
Modelling of stings

y(z,t)∂
z∂

y(z,t) y(z,t)∂
z∂

2
y(z,t)∂

z∂ 2 dz+

T

dz T

T

f(z,t)

z

z

y

ρA(z),   (z)

Figure 1

Strings are elastic elements that are subjected to tensile forces (see Fig. 1).
It is assumed that the tensile force T is large enough to neglect its variations due to
small motion of the string around its equilibrium position. In the Fig. 1 A(z) stands
for area of cross-section of the string and ((z) is its density. Motion of the string is
caused by the unit vertical load f(z, t) that in a general case can be a function of
time t and the position z. Let us consider element dz of the sting. Its position is
determined by the coordinate z and its mass dm is

dm = A(z)((z)dz (3.1)

The free body diagram of this element is shown in Fig. 1. According to the second
Newton’s law

dm
∂2y(z, t)

∂t2
= −T ∂y(z, t)

∂z
+ T

µ
∂y(z, t)

∂z
+

∂2y(z, t)

∂z2
dz

¶
+ f(z, t)dz (3.2)
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Introduction of Eq. 3.1 into Eq. 3.2 and its simplification yields

A(z)((z)
∂2y(z, t)

∂t2
dz − T

∂2y(z, t)

∂z2
dz = f(z, t)dz (3.3)

If one divide this equation by A(z)((z)dz it takes form

∂2y(z, t)

∂t2
− T

A(z)((z)

∂2y(z, t)

∂z2
=

f(z, t)

A(z)((z)
(3.4)

If the string is uniform ( A and ρ are independent of z ) the equation of motion is

∂2y(z, t)

∂t2
− λ2

∂2y(z, t)

∂z2
= q(z, t) (3.5)

where

λ2 =
T

A(
; q(z, t) =

f(z, t)

A(
(3.6)

Modelling of rods

y(z,t)

dz

f(z,t)

z

z

ρE(z), A(z),   (z)dz

F(z,t) F(z,t)∂
z∂ dz+F(z,t)

z

F(z,t)

F(z,t)

F(z,t)∂
z∂ dz+F(z,t)

Figure 2
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Rods are elastic elements that are subjected to the axial forces. Let as consider
a rod of the cross-section A(z), Young’s modulus E(z) and the density ((z). Motion
of the rod is excited by the axial force f(z, t) that, in a general case, can be a function
of position z and time t. Let us consider the highlighted in Fig. 2 element dz. Its
instantaneous position is determined by the displacement y(z, t). Application of the
second Newton’s law to the free body diagram of the element yields.

dm
∂2y(z, t)

∂t2
= −F (z, t) + F (z, t) +

∂F (z, t)

∂z
dz + f(z, t)dz (3.7)

The axial force F (z, t) is related to the elongation of the element by Hooke’s law

F (z, t) = A(z)E(z)
∂y(z,t)
∂z

dz

dz
= A(z)E(z)

∂y(z, t)

∂z
(3.8)

Upon introducing the above expression into Eq. 3.7 one may obtain

dm
∂2y(z, t)

∂t2
− ∂

∂z

µ
A(z)E(z)

∂y(z, t)

∂z

¶
dz = f(z, t)dz (3.9)

Since mass of the element is
dm = A(z)((z)dz (3.10)

the equation of motion of the element is

A(z)((z)
∂2y(z, t)

∂t2
− ∂

∂z

µ
A(z)E(z)

∂y(z, t)

∂z

¶
= f(z, t) (3.11)

If the rod is uniform ( A, E, ( are constant) one can get

∂2y(z, t)

∂t2
− λ2

∂2y(z, t)

∂z2
= q(z, t) (3.12)

where

λ2 =
E

(
; q(z, t) =

f(z, t)

A(
(3.13)
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Modelling of shafts

z

dzz 

z

ρG(z), J(z), A(z),   (z)

T(z,t)

(z,t)

(z,t)ϕ 

(z,t) τ

T(z,t)∂
z∂ dz+T(z,t)

ϕ 

  (z,t)∂
z∂ dz+(z,t)

ϕϕ
(z,t)ϕ

Figure 3

Shafts are elastic elements that are subjected to torques. Let us assume that the
torque τ(z, t) is distributed along the axis z and is a function of time t (see Fig. 3).
The shaft has the shear modulus G(z), the density ((z), the cross-section area A(z)
and the second moment of area J(z). Due to the moment τ(z, t), the shaft performs
the torsional vibrations and the instantaneous angular position of the cross-section
at z is ϕ(z, t). The angular position at the distance z + dz is by the total differential
∂ϕ(z,t)
∂z

dz greater. Let us consider the element dz of the shaft. Its moment of inertia
about the axis z is

dI =

Z
A

r2dA((z)dz = ((z)dz

Z
A

r2dA = J(z)((z)dz (3.14)

Owning to the generalized Newton’s law we can write the following equation

dI
∂2ϕ(z, t)

∂t2
= −T (z, t) + T (z, t) +

∂T (z, t)

∂z
dz + τ(z, t)dz (3.15)
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After introduction of Eq. 3.14 and an elementary simplification the equation 3.15
takes form

J(z)((z)
∂2ϕ(z, t)

∂t2
− ∂T (z, t)

∂z
= τ(z, t) (3.16)

If we introduce the relationship between the torque T (z, t) and the deflection ϕ(z, t)

∂ϕ(z, t)

∂z
dz =

T (z, t)dz

G(z)J(z)
(3.17)

into Eq. 3.16 we are getting

J(z)((z)
∂2ϕ(z, t)

∂t2
− ∂

∂z
G(z)J(z)

µ
∂ϕ(z, t)

∂z

¶
= τ(z, t) (3.18)

If J(z), ((z) and G(z) are constant, the equation of motion takes form.

∂2ϕ(z, t)

∂t2
− λ2

∂2ϕ(z, t)

∂z2
= q(z, t) (3.19)

where

λ2 =
G

(
; q(z, t) =

τ(z, t)

J(
(3.20)

3.1.2 Modelling of beams
Beams are elastic elements that are subjected to lateral loads (forces or moments
that have their vectors perpendicular to the centre line of a beam). Let us consider
a beam of the second moment of area J(z), cross-section A(z), density ((z) and the
Young’s modulus E(z). The beam performs vibrations due to the external distributed
unit load f(z, t). The instantaneous position of the element dz is highlighted in Fig.
4. The equation of motion of the beam in the z direction is

dm
∂2y(z, t)

∂t2
= +V (z, t)− V (z, t)− ∂V (z, t)

∂z
dz + f(z, t)dz (3.21)

If one neglect the inertia moment associated with rotation of the element dz, sum of
the moments about the point G has to be equal to zero

V (z, t)
dz

2
+

µ
V (z, t) +

∂V (z, t)

∂z
dz

¶
dz

2
+M(z, t)−

µ
M(z, t) +

∂M(z, t)

∂z
dz

¶
= 0

(3.22)

Simplification of the above equation and omission of the terms of order higher then
one with respect to dz, yields the relationship between the bending moment M and
the shearing force V.

V (z, t) =
∂M(z, t)

∂z
(3.23)

Since mass of the element dz is

dm = A(z)((z)dz (3.24)
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and taking into account Eq. 3.23, one can get the equation of motion in the following
form

A(z)((z)
∂2y(z, t)

∂t2
+

∂M2(z, t)

∂z2
= f(z, t) (3.25)

The mechanics of solids offers the following relationship between the deflection of the
beam y(z, t) and the bending moment M(z, t).

M(z, t) = E(z)J(z)
∂2y(z, t)

∂z2
(3.26)

Introduction of equation 3.26 into equation 3.25 yields

A(z)((z)
∂2y(z, t)

∂t2
+

∂2

∂z2

µ
E(z)J(z)

∂2y(z, t)

∂z2

¶
= f(z, t) (3.27)

If the following parameters of the beam A, J, E and ( are constant, motion of the
beam is governed by the following equation

∂2y(z, t)

∂t2
+ λ2

∂4y(z, t)

∂z4
= q(z, t) (3.28)

where

λ2 =
EJ

A(
; q(z, t) =

f(z, t)

A(
(3.29)
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3.2 ANALYSIS OF CONTINUOUS SYSTEMS

As could be seen from the previous section, vibrations of strings, rods and shafts are
described by the same mathematical model. Therefore, its analysis can be discussed
simultaneously. The strict solution can be produced only if parameters of the system
considered are constant. In this case the governing equation

∂2y(z, t)

∂t2
− λ2

∂2y(z, t)

∂z2
= q(z, t) (3.30)

is classified as linear partial differential equation of two variables ( z and t ) with
constant coefficients ( λ2 ). The general solution, a function of two variables, is sum
of the general solution of the homogeneous equation and the particular solution of
the non-homogeneous equation. If the external excitation q(z, t) = 0, the equation
3.30 describes the free vibration of the system due to a non-zero initial excitation
determined by the initial conditions.

3.2.1 Free vibration of strings, rods and shafts
The free vibrations (natural vibrations) are governed by the homogeneous equation
of Eq. 3.30

∂2y(z, t)

∂t2
− λ2

∂2y(z, t)

∂z2
= 0 (3.31)

Boundary conditions - natural frequencies and natural modes

Let us predict the particular solution of the above equation in a form of the product
of two functions. One of them is a function of the position z and the other one is a
function of time t.

y(z, t) = Y (z) sinωnt (3.32)

Introduction of the predicted solution 3.32 into equation 3.31 yields the following
ordinary differential equation

−ω2nY (z)− λ2Y II(z) = 0 (3.33)

or
Y II(z) + β2nY (z) = 0 (3.34)

where
βn =

ωn

λ
(3.35)

The general solution of this equation is

Yn(z) = Sn sinβnz + Cn cosβnz (3.36)

where

βn = ωn

r
A(

T
for strings (3.37)

βn = ωn

r
(

E
for rods (3.38)
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βn = ωn

r
(

G
for shafts (3.39)

The values for the parameter βn as well as the constants Sn and Cn should be chosen
to fulfill the boundary conditions. Some of the boundary conditions for strings, rods
and shafts are shown in the following table.
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Table 3.1

y

z
l

string

for z = 0 Yn = 0
for z = l Yn = 0

z
l

free-free rod

for z = 0 F = AEY I
n = 0

for z = l F = AEY I
n = 0

z
l

fixed-free rod

for z = 0 Yn = 0
for z = l F = AEY I

n = 0

z
l

k

fixed-elasticaly supported rod

for z = 0 Yn = 0
for z = l F = AEY I

n = −kYn

z
l

fixed-fixed rod

for z = 0 Yn = 0
for z = l Yn = 0

z
l

free-free shaft

for z = 0 T = GJY I
n = 0

for z = l T = GJY I
n = 0

z
l

fixed free shaft

for z = 0 Yn = 0
for z = l T = GJY I

n = 0

z
l

fixed-fixed shaft

for z = 0 Yn = 0
for z = l Yn = 0
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To demonstrate the way of the determination of the natural frequencies and
the corresponding natural modes, let us consider the fixed on both ends shaft (last
row of the above Table). For this case the boundary conditions are

for z = 0 Yn = 0

for z = l Yn = 0 (3.40)

Introduction of this boundary conditions into the solution 3.36, results in a set of two
homogeneous algebraic equations linear with respect to the constants Sn and Cn.

0 = 0 · Sn + 1 · Cn

0 = (sinβnl)Sn + (cosβnl)Cn (3.41)

Its matrix form is ∙
0 1
sinβnl cos βnl

¸ ∙
Sn
Cn

¸
=

∙
0
0

¸
(3.42)

This set of equations has non-zero solutions if and only if its characteristic determinant
is equal to zero. ¯̄̄̄

0 1
sinβnl cosβnl

¯̄̄̄
= 0 (3.43)

Hence, in this particular case we have

sinβnl = 0 (3.44)

This equation is called characteristic equation and has infinite number of solution.
Since βn and l are always positive, only positive roots of the above equation has the
physical meaning

β1 =
π

l
, β2 =

2π

l
, ........ βn =

nπ

l
, ........... n = 1, 2, ....∞ (3.45)

Taking advantage of equation 3.39 one can compute the natural frequencies to be
βn = ωn

p
(
G

ωn = βn

s
G

(
=

nπ

l

s
G

(
n = 1, 2, ....∞ (3.46)

For each of this natural frequencies the set of equations 3.41 becomes linearly de-
pendant and one of the constants can be chosen arbitrarily. If one choose arbitrarily
Sn,say Sn = 1, according to the first equation of the set 3.41, Cn has to be equal to
0. Therefore we can conclude that the predicted solution, according to 3.36, in the
case considered is

Yn(z) = sinβnz = sin
nπ

l
z n = 1, 2, ....∞ (3.47)

The functions Yn(z)are called eigenfunctions or natural modes and the corresponding
roots ωn are called eigenvalues or natural frequencies. The above analysis allows to
conclude that a continuous system possesses infinite number of the natural frequencies
and infinite number of the corresponding natural modes. The first mode is called
fundamental mode and the corresponding frequency is called fundamental natural
frequency. In the case of free vibrations of the shaft, the natural modes determine
the angular positions of the cross-section of the shaft ϕ(z). A few first of them are
shown in Fig. 5
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Orthogonality of the natural modes

Let us consider two arbitrarily chosen natural modes Yi(z) and Yj(z). Both of them
must fulfill the equation 3.33

−ω2nY (z)− λ2Y II(z) = 0

Hence

−ω2iYi(z)− λ2Y II
i (z) = 0 (3.48)

−ω2jYj(z)− λ2Y II
j (z) = 0 (3.49)

Premultiplying the equation 3.48 by Yj(z) and the equation 3.49 by Yi(z) and then
integrating them side by side one can get

ω2i

Z l

0

Yi(z)Yj(z)dz + λ2
Z l

0

Y II
i (z)Yj(z)dz = 0

ω2j

Z l

0

Yj(z)Yi(z)dz + λ2
Z l

0

Y II
j (z)Yi(z)dz = 0 (3.50)

The second integrals can be integrated by parts. Hence

ω2i

Z l

0

Yi(z)Yj(z)dz + λ2
³
Y I
i (z)Yj(z)

¯̄l
0

´
− λ2

Z l

0

Y I
i (z)Y

I
j (z)dz = 0

ω2j

Z l

0

Yj(z)Yi(z)dz + λ2
³
Y I
J (z)Yi(z)

¯̄l
0

´
− λ2

Z l

0

Y I
i (z)Y

I
j (z)dz = 0 (3.51)

Substraction of the second equation from the first one yields¡
ω2i − ω2j

¢ Z l

0

Yj(z)Yi(z)dz + λ2
³¡

Y I
i (z)Yj(z)

¢¯̄l
0
− ¡Y I

J (z)Yi(z)
¢¯̄l
0

´
= 0 (3.52)
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It is easy to show that for any boundary conditions the second expression is equal to
zero¡
Y I
i (z)Yj(z)

¢¯̄l
0
− ¡Y I

J (z)Yi(z)
¢¯̄l
0
= Y I

i (l)Yj(l)−Y I
i (0)Yj(0)−Y I

J (l)Yi(l)+Y
I
J (0)Yi(0) = 0

(3.53)

Hence, Z l

0

Yj(z)Yi(z)dz = 0 (3.54)

The above property of the eigenfunctions is called orthogonality condition.

General solution of the homogeneous equation

According to 3.32 one of the particular solution of the equation 3.31 can be adopted
in the following form

y(z, t) = Y (z) sinωnt (3.55)

At this stage of consideration the function Y (z) is known and we are able to produce
infinite number of such particular solutions.

yn(z, t) = Yn(z) sinωnt n = 1, 2, 3.....∞ (3.56)

Since the equation 3.31 is of second order with respect to time, to fulfill initial con-
ditions we need second set of linearly independent solution. It the same manner as
it was done in the previous section one may prove that the following functions form
the required linearly independent set of solution.

yn(z, t) = Yn(z) cosωnt n = 1, 2, 3.....∞ (3.57)

Hence, the general solution of the equation 3.31 eventually may be adopted in the
following form.

y(z, t) =
∞X
n=1

SnYn(z) sinωnt+ CnYn(z) cosωnt (3.58)

This solution has to fulfill the initial conditions. The initial conditions determine the
initial position Y0(z) and the initial velocity V0(z) of the system considered for the
time t equal to zero.

y(z, 0) = Y0(z)
∂

∂t
y(z, 0) = V0(z) (3.59)

To produce the constant Snand Cn let us introduce the solution 3.58 into the above
initial conditions. This operation results in the following two equations.

Y0(z) =
∞X
n=1

CnYn(z)

V0(z) =
∞X
n=1

SnωnYn(z) (3.60)
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To determine the unknown constants Sn and Cn, let us multiply the above equations
by Ym(z) and then integrate them side by sideZ l

0

Y0(z)Ym(z)dz =
∞X
n=1

Cn

Z l

0

Yn(z)Ym(z)dzZ l

0

V0(z)Ym(z)dz =
∞X
n=1

Snωn

Z l

0

Yn(z)Ym(z)dz (3.61)

Taking advantage of the developed orthogonality conditions 3.54 the wanted constants
Sn and Cn are

Cn =

R l
0
Y0(z)Yn(z)dzR l
0
Y 2
n (z)dz

Sn =
1

ωn

R l
0
V0(z)Yn(z)dzR l
0
Y 2
n (z)dz

(3.62)

For the example considered in the previous section the above formulae, according to
3.47, take form

Cn =

R l
0
Y0(z) sin

nπ
l
zdzR l

0

¡
sin nπ

l
z
¢2
dz

Sn =
1

ωn

R l
0
V0(z) sin

nπ
l
zdzR l

0

¡
sin nπ

l
z
¢2
dz

(3.63)

3.2.2 Free vibrations of beams
For the uniform beam the equation of motion was derived to be

∂2y(z, t)

∂t2
+ λ2

∂4y(z, t)

∂z4
= q(z, t) (3.64)

This equation can be classified as linear partial differential equation of two variables
( z and t ) with constant coefficients ( λ2 ). Its order with respect to time is 2 and
with respect to z is equal to 4. The general solution, a function of two variables, is
sum of the general solution of the homogeneous equation and the particular solution
of the non-homogeneous equation. If the external excitation q(z, t) = 0, the equation
3.64 describes the free vibration of the beam due to a non-zero initial conditions.

The free vibrations (natural vibrations) are governed by the homogeneous
equation of 3.64.

∂2y(z, t)

∂t2
+ λ2

∂4y(z, t)

∂z4
= 0 (3.65)

Boundary conditions - natural frequencies and natural modes

Similarly to the analysis of strings and shafts, let us predict the solution of the above
equation in the form of a product of two functions. One of them is a function of the
position z and the other is the function of time t.

y(z, t) = Y (z) sinωnt (3.66)
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Introduction of the predicted solution 3.66 into equation 3.65 yields the following
ordinary differential equation

−ω2nY (z) + λ2Y IV (z) = 0 (3.67)

or
Y IV (z)− β4nY (z) = 0 (3.68)

where

β4n =
ω2n
λ2
=

Aρ

EJ
ω2n (3.69)

The standard form of its particular solution is

Y (z) = erz (3.70)

Introduction of this solution into the equation 3.68 yields the characteristic equation

r4 = β4n (3.71)

Its roots
r1 = βn r2 = −βn r3 = iβn r2 = −iβn (3.72)

determine the set of the linearly independent particular solution.

Y1(z) = eβnz Y2(z) = e−βnz Y3(z) = eiβnz Y1(z) = e−iβnz (3.73)

Alternatively, one can choose their combinations as the set of the independent solu-
tions

Y1(z) =
eβnz − e−βnz

2
= sinhβnz Y2(z) =

eβnz + e−βnz

2
= coshβnz

Y3(z) =
eiβnz − e−iβnz

2
= sinβnz Y2(z) =

eiβnz + e−iβnz

2
= cosβnz (3.74)

A graphical interpretation of these functions for βn = 1 is given in Fig. 6.
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Figure 6
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The general solution of the equation 3.68, as a linear combination of these
particular solutions is

Yn(z) = An sinhβnz +Bn coshβnz + Cn sinβnz +Dn cosβnz

(3.75)

Values for the parameter βn as well as for the constants An, Bn, Cn and Dn should
be chosen to fulfill boundary conditions. Since this equation is of fourth order, one
has to produce four boundary conditions reflecting the conditions at both ends of the
beam. They involve the function Y (z) and its first three derivatives with respect to
z.

Yn(z) = An sinhβnz +Bn coshβnz + Cn sinβnz +Dn cosβnz

(3.76)

Y I
n (z) = Anβn coshβnz +Bnβn sinhβnz + Cnβn cosβnz −Dnβn sinβnz

(3.77)

Y II
n (z) = Anβ

2
n sinhβnz +Bnβ

2
n coshβnz − Cnβ

2
n sinβnz −Dnβ

2
n cosβnz

(3.78)

Y I
n (z) = Anβ

3
n coshβnz +Bnβ

3
n sinhβnz − Cnβ

3
n cosβnz = Dnβ

3
n sinβnz

(3.79)

The boundary conditions for some cases of beams are shown in Table 3.2.

Table 3.2

z
l

Y

O

free-free beam

for z = 0 M(0) = EJY II(0) = 0
for z = 0 V (0) = EJY III(0) = 0
for z = l M(l) = EJY II(l) = 0
for z = l V (l) = EJY III(l) = 0

z
l

Y

O

fixed-free beam

for z = 0 Y (0) = 0
for z = 0 Y I(0) = 0
for z = l M(l) = EJY II(l) = 0
for z = l V (l) = EJY III(l) = 0

z
l

Y

O

pined-fixed beam

for z = 0 Y (0) = 0
for z = 0 M(0) = EJY II(0) = 0
for z = l Y (l) = 0
for z = l Y I(l) = 0

z

l

Y

O

k k

elasticaly supported beam

for z = 0 M(0) = EJY II(0) = 0
for z = 0 V (0) = EJY III(0) = −kY (0)
for z = l M(l) = EJY II(l) = 0
for z = l V (l) = EJY III(l) = +kY (l)
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Let us take advantage of the boundary conditions corresponding to the free-
free beam in order to determine the natural frequencies and the natural modes.

for z = 0 M(0) = EJY II(0) = 0
for z = 0 V (0) = EJY III(0) = 0
for z = l M(l) = EJY II(l) = 0
for z = l V (l) = EJY III(l) = 0

(3.80)

Introduction of the functions 3.78 and 3.79 into the above boundary conditions results
in the following set of algebraic equations that are linear with respect to the constants
An, Bn, Cn and Dn.⎡⎢⎢⎣

0 β2n 0 −β2n
β3n 0 −β3n 0
β2n sinhβnl β2n coshβnl −β2n sinβnl −β2n cosβnl
β3n coshβnl β3n sinhβnl −β3n cosβnl β3n sinβnl

⎤⎥⎥⎦
⎡⎢⎢⎣

An

Bn

Cn

Dn

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ (3.81)

They have a non-zero solution if and only if their characteristic determinant is equal
to zero. This condition forms the characteristic equation¯̄̄̄

¯̄̄̄ 0 1 0 −1
1 0 −1 0
sinhβnl coshβnl − sinβnl − cosβnl
coshβnl sinh βnl − cos βnl sinβnl

¯̄̄̄
¯̄̄̄ = 0 (3.82)

that, after simplification, takes the following form

coshβnl cosβnl − 1 = 0 (3.83)

This characteristic equation is transcendental and therefore has infinite number of
roots. Solution of this equation, within a limited range of the parameter βnl is shown
in Fig. 7

The first few roots are

β0l = 0 β1l = 4.73 β2l = 7.85 β3l = 11......... (3.84)

As one can see from the diagram 7, the characteristic equation has double root of zero
magnitude. Since the beam considered is free-free in space, this root is associated with
the possible translation and rotation of the beam as a rigid body. These two modes,
corresponding to the zero root are shown in Fig. 8a) and b). Modes corresponding
to the non-zero roots can be produced according to the following procedure.

For any root of the characteristic equation the set of equations 3.81, since
its characteristic determinant is zero, becomes linearly dependant. Therefore, it is
possible to choose arbitrarily one of the constants (for example An) and the other
can be obtained from three arbitrarily chosen equations 3.81. If we take advantage
of the second, third and fourth equation we are getting

⎡⎣ 0 −1 0
coshβnl − sinβnl − cosβnl
sinh βnl − cos βnl sinβnl

⎤⎦⎡⎣ Bn

Cn

Dn

⎤⎦ = −
⎡⎣ 1sinhβnl
coshβnl

⎤⎦An (3.85)
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Hence, for An = −1 we have⎡⎣ Bn

Cn

Dn

⎤⎦ =
⎡⎣ 0 −1 0
coshβnl − sinβnl − cosβnl
sinhβnl − cosβnl sinβnl

⎤⎦−1 ⎡⎣ 1sinhβnl
coshβnl

⎤⎦ (3.86)

For the first non-zero root β1l = 4.73 the above set of equations yields values for
constants B1, C1 and D1⎡⎣ B1

C1
D1

⎤⎦ =
⎡⎣ 0 −1 0
cosh 4.73 − sin 4.73 − cos 4.73
sinh 4.73 − cos 4.73 sin 4.73

⎤⎦−1 ⎡⎣ 1sinh 4.73
cosh 4.73

⎤⎦ =
⎡⎣ 1.017 8−1.0
1.0177

⎤⎦
(3.87)

Hence, the corresponding mode, according to Eq. 3.75 is

Y1(z) = −1.0 sinh 4.73z + 1.0178 cosh 4.73z − 1.0 sin 4.73z + 1.0177 cos 4.73z (3.88)

Its graphical representation is shown in Fig. 8c).
In the same manner one can produce modes for all the other characteristic

roots. Modes for β2l = 7.85 and β3l = 11 are shown in Fig. 8d) and e) respectively.
The formula 3.69 allows the natural frequencies to be computed.

ωn = β2n

s
EJ

Aρ
=
(βnl)

2

l2

s
EJ

Aρ
(3.89)

Eventually, taking into account the predicted solution 3.66, the particular solution is

y(z, t) = SnYn(z) sinωnt (3.90)
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where Yn(z) and ωn are uniquely determined and Sn is an arbitrarily chosen constant.
In the same manner we can show that the function

y(z, t) = CnYn(z) cosωnt (3.91)

is the linearly independent particular solution too. It follows that the following linear
combination

n=∞X
n=1

Yn(z) (Sn sinωnt+ Cn cosωnt) (3.92)

where

Y1(z) = −1.0 sinh 4.73z + 1.0178 cosh 4.73z − 1.0 sin 4.73z + 1.0177 cos 4.73z
Y2(z) = ..................... (3.93)

.....................

is the general solution of the equation 3.65. The constants Sn and Cn should be
chosen to fulfill the initial conditions.

Orthogonality of the natural modes Let us consider two arbitrarily cho-
sen natural modes Yi(z) and Yj(z). Both of them must fulfill the equation 3.67

−ω2nY (z) + λ2Y IV (z) = 0

Hence

−ω2iYi(z) + λ2Y IV
i (z) = 0 (3.94)

−ω2jYj(z) + λ2Y IV
j (z) = 0 (3.95)

Premultiplying the equation 3.94 by Yj(z) and the equation 3.95 by Yi(z) and then
integrating them side by side one can get

−ω2i
Z l

0

Yi(z)Yj(z)dz + λ2
Z l

0

Y IV
i (z)Yj(z)dz = 0

−ω2j
Z l

0

Yj(z)Yi(z)dz + λ2
Z l

0

Y IV
j (z)Yi(z)dz = 0 (3.96)

The second integrals can be integrated by parts. Hence

−ω2i
Z l

0

Yi(z)Yj(z)dz + λ2
³
Y III
i (z)Yj(z)

¯̄l
0

´
− λ2

Z l

0

Y III
i (z)Y I

j (z)dz = 0

−ω2j
Z l

0

Yj(z)Yi(z)dz + λ2
³
Y III
J (z)Yi(z)

¯̄l
0

´
− λ2

Z l

0

Y III
i (z)Y I

j (z)dz = 0

(3.97)
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Let us apply the same procedure to the last integral again

−ω2i
R l
0
Yi(z)Yj(z)dz + λ2

³
Y III
i (z)Yj(z)

¯̄l
0

´
+

−λ2
³
Y II
i (z)Y

I
j (z)

¯̄l
0

´
+ λ2

R l
0
Y II
i (z)Y

II
j (z)dz = 0

(3.98)

−ω2j
R l
0
Yi(z)Yj(z)dz + λ2

³
Y III
j (z)Yi(z)

¯̄l
0

´
+

−λ2
³
Y II
j (z)Y

I
i (z)

¯̄l
0

´
+ λ2

R l
0
Y II
i (z)Y

II
j (z)dz = 0

Substraction of the second equation from the first one yields¡
ω2i − ω2j

¢ R l
0
Yj(z)Yi(z)dz+

−λ2
³
Y III
i (z)Yj(z)

¯̄l
0

´
+ λ2

³
Y II
i (z)Y

I
j (z)

¯̄l
0

´
+λ2

³
Y III
j (z)Yi(z)

¯̄l
0

´
− λ2

³
Y II
j (z)Y

I
i (z)

¯̄l
0

´
= 0

(3.99)

The expression

−λ2
³
Y III
i (z)Yj(z)

¯̄l
0

´
+λ2

³
Y II
i (z)Y

I
j (z)

¯̄l
0

´
+λ2

³
Y III
j (z)Yi(z)

¯̄l
0

´
−λ2

³
Y II
j (z)Y

I
i (z)

¯̄l
0

´
(3.100)

depends exclusively on boundary conditions. It is easy to show that for any possible
boundary conditions this expression is equal to zero. Hence,Z l

0

Yj(z)Yi(z)dz = 0 (3.101)

The above property of the natural modes is called orthogonality condition and play
a very important role in further development of the theory of vibrations.
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3.2.3 Problems
Problem 41

z

G1, A1, ρ1, J1 G2, A2, ρ2,  J2

l1 l2

Figure 9

For the shaft shown in Fig. 9 produce equation for its natural frequencies.
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Solution
For

0 < z < l1 (3.102)

motion of the system, according to 3.19, is governed by the following equation

∂2ϕ1(z, t)

∂t2
− λ21

∂2ϕ1(z, t)

∂z2
= 0 (3.103)

where
λ21 =

G1

(1
(3.104)

Similarly, one may say that within range

l1 < z < l1 + l2 (3.105)

motion of the shaft is governed by

∂2ϕ2(z, t)

∂t2
− λ22

∂2ϕ2(z, t)

∂z2
= 0 (3.106)

where
λ22 =

G2

(2
(3.107)

Both parts of the shaft must have the same natural frequencies. Therefore the par-
ticular solution of the above equations must be of the following form

ϕ1(z, t) = Φ1(z) sinωnt (3.108)

ϕ2(z, t) = Φ2(z) sinωnt (3.109)

Introduction of these solutions into the equations of motion yields, according to 3.34,

ΦII
1 (z) + β2n1Φ1(z) = 0 (3.110)

ΦII
2 (z) + β2n2Φ2(z) = 0 (3.111)

where
βn1 =

ωn

λ1
βn2 =

ωn

λ2
(3.112)

These two equations are coupled together by the following boundary conditions

for z = 0 Φ1(0) = 0

for z = l1 Φ1(l1) = Φ2(l1)

for z = l1 G1J1Φ
I
1(l1) = G2J2Φ

I
2(l1)

for z = l1 + l2 ΦI
2(l1 + l2) = 0 (3.113)

The first boundary condition reflects the fact that the left hand end of the shaft is
fixed. The second and the third condition represent the continuity of the angular
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displacement and continuity of the torque. The last condition says that the torque
at the free end is zero. Since the general solution of equation 3.110 and 3.111are

Φ1(z) = Sn1 sin
ωn

λ1
z + Cn1 cos

ωn

λ1
z (3.114)

Φ2(z) = Sn2 sin
ωn

λ2
z + Cn2 cos

ωn

λ2
z (3.115)

the formulated boundary conditions results in the following set of equations

Cn1 = 0
Sn1 sin

ωn
λ1
l1 + Cn1 cos

ωn
λ1
l1 − Sn2 sin

ωn
λ2
l2 − Cn2 cos

ωn
λ2
l2 = 0

Sn1G1J1
ωn
λ1
cos ωn

λ1
l1 − Cn1G1J1

ωn
λ1
sin ωn

λ1
l1+

−Sn2G2J2
ωn
λ2
cos ωn

λ2
l1 + Cn2G2J2

ωn
λ2
sin ωn

λ2
l1 = 0

+Sn2
ωn
λ2
cos ωn

λ2
(l1 + l2)− Cn2

ωn
λ2
sin ωn

λ2
(l1 + l2) = 0

(3.116)

Its matrix for is

[A]

⎡⎢⎢⎣
Sn1
Cn1

Sn2
Cn2

⎤⎥⎥⎦ = 0 (3.117)

where

[A] =

⎡⎢⎢⎣
0 1 0 0
sin ωn

λ1
l1 cos ωn

λ1
l1 − sin ωn

λ2
l2 − cos ωn

λ2
l2

G1J1
ωn
λ1
cos ωn

λ1
l1 −G1J1

ωn
λ1
sin ωn

λ1
l1 −G2J2

ωn
λ2
cos ωn

λ2
l1 G2J2

ωn
λ2
sin ωn

λ2
l1

0 0 ωn
λ2
cos ωn

λ2
(l1+l2) −ωn

λ2
sin ωn

λ2
(l1+l2)

⎤⎥⎥⎦
This homogeneous set of equations has the non-zero solutions if and only if its char-
acteristic determinant is equal to zero.¯̄̄̄
¯̄̄̄ 0 1 0 0
sin ωn

λ1
l1 cos ωn

λ1
l1 − sin ωn

λ2
l2 − cos ωn

λ2
l2

G1J1
ωn
λ1
cos ωn

λ1
l1 −G1J1

ωn
λ1
sin ωn

λ1
l1 −G2J2

ωn
λ2
cos ωn

λ2
l1 G2J2

ωn
λ2
sin ωn

λ2
l1

0 0 ωn
λ2
cos ωn

λ2
(l1+l2) −ωn

λ2
sin ωn

λ2
(l1+l2)

¯̄̄̄
¯̄̄̄= 0
(3.118)

Solution of this equation for the roots ωn yields the wanted natural frequencies of the
shaft.
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Problem 42

 

z

l
E , A  , ρ

m

1

2

Figure 10

The uniform rod 1 , shown in Fig. 10, is connected to the block 2 of mass
m. Compute the natural frequencies and the corresponding natural modes of this
assembly.
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Solution
The equation of motion of the rod, according to Eq. 3.12, is

∂2y(z, t)

∂t2
− λ2

∂2y(z, t)

∂z2
= 0 (3.119)

where
λ2 =

E

(
(3.120)

To produce the boundary conditions let us consider the block 2 with the adjusted
infinitesimal element (see Fig. 11).

z

l

y(l,t)

y

m

F(l,t)

Figure 11

Equation of motion of the block, according to the Newton’s law, is

m
∂2y(l, t)

∂t2
= −F (l, t) (3.121)

or, taking advantage of the relationship 3.8

m
∂2y(z, t)

∂t2

¯̄̄̄
z=l

= −AE ∂y(z, t)

∂z

¯̄̄̄
z=l

(3.122)

This equation together with the condition corresponding to the upper end of the rod

y(0, t) = 0 (3.123)

forms boundary conditions for the equation 3.119.(
y(0, t) = 0

m ∂2y(z,t)
∂t2

¯̄̄
z=l
= −AE ∂y(z,t)

∂z

¯̄̄
z=l

(3.124)

Introduction of the particular solution (see Eq. 3.32)

y(z, t) = Y (z) sinωnt (3.125)
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into the equation of motion 3.119 and the boundary conditions 3.124 yields the ordi-
nary differential equation

Y II(z) + β2nY (z) = 0; βn =
ωn

λ
(3.126)

with boundary conditions ½
Y (0) = 0
mω2nY (l)−AEY I(l) = 0

(3.127)

The general solution of the equation 3.126, according to 3.36, is

Yn(z) = Sn sinβnz + Cn cosβnz (3.128)

Introduction of this solution into boundary conditions yields½
Cn = 0
mω2n (Sn sinβnz + Cn cosβnz)−AE (Snβn cosβnz − Cnβn sinβnz) = 0

(3.129)

or ¡
mω2n sinβnz −AEβn cosβnz

¢
Sn = 0 (3.130)

Hence, the characteristic equation, after taking advantage of 3.126, is

mω2n sin
ωn

λ
z −AE

ωn

λ
cos

ωn

λ
z = 0 (3.131)

or after simplification

tan
ωn

λ
l − AE

λωnm
= 0 (3.132)

For the following numerical data
l = 1m
E = 2.1× 1011N/m2

A = 25× 10−4m2

ρ = 7800kg/m3

λ =
q

E
ρ
= 5188.7m/s

mr = A× l × ρ = 19.5kg - mass of the rod
m = 20kg - mass of the block
the characteristic equation takes the following form

f(ωn) = tan
³ ωn

5188.7

´
− 5059.0

ωn
= 0 (3.133)

Its solution f(ω = 0 is shown in Fig. 12.
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Figure 12

The first three natural frequencies, according to the diagram 12 are

ω1 = 4400, ω2 = 17720, ω1 = 33400 s
−1 (3.134)

The corresponding natural modes, according to 3.128, are

Yn(z) = Sn sinβnz = Sn sin
ωn

λ
z = Sn sin

ωn

5188.7
z (3.135)

For the first three natural frequencies the corresponding natural modes

Y1(z) = sin
4400

5188.7
z Y2(z) = sin

17720

5188.7
z Y3(z) = sin

33400

5188.7
z (3.136)

are presented in Fig. 13, 14 and 15 respectively.If we neglect the mass of the rod, the
system becomes of one degree of freedom and its the only one natural frequency is

ω1 =

r
k

m
=

r
EA

lm
=

r
2.1× 1011 × 25× 10−4

20
= 5123s−1 (3.137)

and the corresponding mode is a straight line.
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Problem 43

Produce natural frequencies and the corresponding natural modes for the fixed-
elastically supported beam shown in Fig. 16

z 

l

k 

y 

O

Figure 16
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Solution
According to the equation 3.65, the equation of motion of the beam is

∂2y(z, t)

∂t2
+ λ2

∂4y(z, t)

∂z4
= 0 (3.138)

Its particular solution can be sought in the following form

y(z, t) = Yn(z) sinωnt (3.139)

the above solution has to fulfill boundary conditions. At the left hand end the dis-
placement and gradient of the beam have to be equal to zero. Hence,

y(z, t)|z=0 = 0 (3.140)
∂y(z, t)

∂z

¯̄̄̄
z=0

= 0 (3.141)

The right hand end, with the forces acting on it, is shown in Fig. 17. Equilibrium

z 

l
k

y 

O

z

dz

k y(z,t)| z=l 

V(z,t)| z=l M(z,t)| z=l 

Figure 17

conditions for the element dz which have to be fulfill for any instant of time, forms
the boundary conditions associated with the right hand end

M(z, t)|z=l = E(z)J(z)
∂2y(z, t)

∂z2

¯̄̄̄
z=l

= 0 (3.142)

V (z, t)|z=l =
∂M(z, t)

∂z

¯̄̄̄
z=l

=
∂

∂z
EJ

∂2y(z, t)

∂z2

¯̄̄̄
z=l

= ky(z, t)|z=l (3.143)

Introduction of the solution 3.139 into the above boundary conditions yields

Yn(z)|z=0 = 0

Y I
n (z)

¯̄
z=0

= 0

Y II
n (z)

¯̄
z=l

= 0

α Y III
n (z)

¯̄
z=l
− Yn(z)|z=l = 0 (3.144)
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where

α =
EJ

k
(3.145)

According to the equations 3.76 to 3.79 the expressions for the natural modes Yn(z)
and their derivatives are

Yn(z) = An sinhβnz +Bn coshβnz + Cn sinβnz +Dn cosβnz

Y I
n (z) = Anβn coshβnz +Bnβn sinhβnz + Cnβn cosβnz −Dnβn sinβnz

Y II
n (z) = Anβ

2
n sinhβnz +Bnβ

2
n coshβnz − Cnβ

2
n sinβnz −Dnβ

2
n cosβnz

Y III
n (z) = Anβ

3
n coshβnz +Bnβ

3
n sinhβnz − Cnβ

3
n cosβnz +Dnβ

3
n sinβnz

(3.146)

where (see Eq. 3.69)

β4n =
ω2n
λ2
=

Aρ

EJ
ω2n (3.147)

Introduction of the above expressions into the boundary conditions 3.144 results in
the following set of algebraic equations that is linear with respect to the constants
An, Bn, Cn and Dn.

Bn +Dn = 0

An + Cn = 0

Anβ
2
n sinh βnl +Bnβ

2
n coshβnl − Cnβ

2
n sinβnl −Dnβ

2
n cosβnl = 0

Anβ
3
nα coshβnl +Bnβ

3
nα sinhβnl − Cnβ

3
nα cosβnl +Dnβ

3
nα sinβnl

−(An sinhβnl +Bn coshβnl + Cn sinβnl +Dn cosβnl) = 0

(3.148)

The matrix form of these equations is presented below⎡⎢⎢⎢⎢⎣
0 1 0 1
1 0 1 0

sinhβnl coshβnl − sinβnl − cosβnl
β3nα coshβnl
− sinhβnl

β3nα sinh βnl
− coshβnl

−β3nα cos βnl
− sinβnl

β3nα sinβnl
− cosβnl

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

An

Bn

Cn

Dn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦
(3.149)

The non-zero solution of this set of equations exists if and only if its characteristic
determinant is equal to zero.¯̄̄̄
¯̄̄̄
¯̄

0 1 0 1
1 0 1 0

sinhβnl coshβnl − sinβnl − cosβnl
β3nα coshβnl
− sinhβnl

β3nα sinhβnl
− coshβnl

−β3nα cosβnl
− sinβnl

β3nα sinβnl
− cosβnl

¯̄̄̄
¯̄̄̄
¯̄ = 0 (3.150)
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For the following data
E = 2.1× 1011N/m2

ρ = 7800kg/m3

A = 0.03× 0.01 = 0.0003m2

J = 0.03×0.013
12

= 2.5× 10−9m4

k = 10000N/m
l = 1m
α = EJ

k
= 2.1×1011×2.5×10−9

10000
= 0.0525

the characteristic equation takes form¯̄̄̄
¯̄̄̄
¯̄

0 1 0 1
1 0 1 0

sinhβn coshβn − sinβn − cosβn
.0525β3n coshβn
− sinhβn

.0525β3n sinhβn
− coshβn

−.0525β3n cosβn
− sinβn

.0525β3n sinβn
− cosβn

¯̄̄̄
¯̄̄̄
¯̄ = 0

(3.151)

Solution of this equation for its roots βn is presented in Fig.18

-200 
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100 

200 
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n 

Figure 18

From this diagram the first three roots are

β1 = 2.942m−1

β2 = 4.884m−1 (3.152)

β3 = 7.888m−1

The relationship 3.147

β4n =
Aρ

EJ
ω2n



ANALYSIS OF CONTINUOUS SYSTEMS 194

offers values for the wanted natural frequencies

ω1 =

s
β41EJ

Aρ
= 129.6s−1

ω2 =

s
β42EJ

Aρ
= 357.3s−1 (3.153)

ω2 =

s
β43EJ

Aρ
= 932.0s−1

For each of these roots the set of equations 3.149 becomes linearly dependant. Hence
one of the unknown constants can be chosen arbitrarily (e.g. Dn = 1) and the last
equation can be crossed out. The three remaining equations allow the constants An,
Bn, and Cn to be computed.⎡⎣ 0 1 0 1

1 0 1 0
sinhβnl coshβnl − sinβnl − cosβnl

⎤⎦
⎡⎢⎢⎣

An

Bn

Cn

1

⎤⎥⎥⎦ =
⎡⎣ 00
0

⎤⎦ (3.154)

⎡⎣ 0 1 0
1 0 1

sinhβnl coshβnl − sinβnl

⎤⎦⎡⎣ An

Bn

Cn

⎤⎦+
⎡⎣ 1

0
− cosβnl

⎤⎦ =
⎡⎣ 00
0

⎤⎦ (3.155)

⎡⎣ An

Bn

Cn

⎤⎦ = −
⎡⎣ 0 1 0

1 0 1
sinh βnl coshβnl − sinβnl

⎤⎦−1 ⎡⎣ 1
0

− cosβnl

⎤⎦ (3.156)

For the first three roots the numerical values of these constants are⎡⎣ A1
B1
C1

⎤⎦ =
⎡⎣ .883
−1.0
−.883

⎤⎦ ;
⎡⎣ A2

B2
C2

⎤⎦ =
⎡⎣ 1.02
−1.0
−1.02

⎤⎦ ;
⎡⎣ A3

B3
C3

⎤⎦ =
⎡⎣ 1.0
−1.0
−1.0

⎤⎦ (3.157)

Introducing them into the first function of 3.146 and remembering that Dn = 1, we
are getting the corresponding natural modes

Y1(z) = .883 sinh 2.942z − 1.0 cosh 2.942z − .883 sin 2.942z + 1 cos 2.942z

Y2(z) = 1.02 sinh 4.884z − 1.0 cosh 4.884z − 1.02 sin 4.884z + 1 cos 4.884z
Y3(z) = 1.0 sinh 7.888z − 1.0 cosh 7.888z − 1.0 sin 7.888z + 1cos 7.888z (3.158)

The graphical interpretation of these natural modes is given in Fig. 19
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Problem 44

ρ , G, Jo 

l 

k 

L 

k

1 2

z

2 

Figure 20

The left hand end of the shaft 1 shown in Fig. 20 is fixed. Its right hand end is
supported by means of the massless and rigid beam 2 of length L that is connected to
two springs each of the stiffness k. Produce the equation for the natural frequencies
of the shaft.

Answer:
2GJo
kL2

ωn
λ
cot ωn

λ
l + 1 = 0 where λ2 = G

ρ
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Problem 45

ρ , G, Jo 

l

1

2

z

2

Figure 21

Two rigid discs 2 (see Fig. 21) are joined together by means of the shaft 1 of
the length l. The moment of inertia of each disc about the axis z is I.

Produce the equation for the natural frequencies of the assembly.
Answer:¯̄̄̄

βn αn

βn cosβnl − αn sinβnl −βn sinβnl − αn cosβnl

¯̄̄̄
= 0

where βn = ωn

p
(
G

αn =
Iω2n
GJo



ANALYSIS OF CONTINUOUS SYSTEMS 198

Problem 46

y 

z 

l, E, J, A, ρ

l

Figure 22

The uniform beam is supported as shown in Fig. 22.
Produce the equations for the natural frequencies of this beam
Answer:

sinhβnl cosβnl − sinβnl coshβnl = 0 βn =
p

ωn
λ

λ = EJ
Aρ

Solution
According to the equation 3.65, the equation of motion of the beam is

∂2y(z, t)

∂t2
+ λ2

∂4y(z, t)

∂z4
= 0 (3.159)

Its particular solution can be sought in the following form

y(z, t) = Yn(z) sinωnt (3.160)

the above solution has to fulfill boundary conditions. At the left hand end the dis-
placement and gradient of the beam have to be equal to zero. Hence,

y(z, t)|z=0 = 0 (3.161)
∂y(z, t)

∂z

¯̄̄̄
z=0

= 0 (3.162)

The right hand end The displacement and the bending moment has to be equal to
zero. Hence,

y(z, t)|z=l = 0 (3.163)

M(z, t)|z=l = E(z)J(z)
∂2y(z, t)

∂z2

¯̄̄̄
z=l

= 0 (3.164)

Introduction of the solution 3.160 into the above boundary conditions yields

Yn(z)|z=0 = 0

Y I
n (z)

¯̄
z=0

= 0

Yn(z)|z=l = 0

Y II
n (z)

¯̄
z=l

= 0 (3.165)
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According to the equations 3.76 to 3.79 the expressions for the natural modes Yn(z)
and their derivatives are

Yn(z) = An sinhβnz +Bn coshβnz + Cn sinβnz +Dn cosβnz

Y I
n (z) = Anβn coshβnz +Bnβn sinhβnz + Cnβn cosβnz −Dnβn sinβnz

Y II
n (z) = Anβ

2
n sinhβnz +Bnβ

2
n coshβnz − Cnβ

2
n sinβnz −Dnβ

2
n cosβnz

Y III
n (z) = Anβ

3
n coshβnz +Bnβ

3
n sinhβnz − Cnβ

3
n cosβnz +Dnβ

3
n sinβnz

(3.166)

where (see Eq. 3.69)

β4n =
ω2n
λ2
=

Aρ

EJ
ω2n (3.167)

Introduction of the above expressions into the boundary conditions 3.165 results in
the following set of algebraic equations that is linear with respect to the constants
An, Bn, Cn and Dn.

Bn +Dn = 0

An + Cn = 0

An sinhβnl +Bn coshβnl + Cn sinβnl +Dn cosβnl = 0

Anβ
2
n sinh βnl +Bnβ

2
n coshβnl − Cnβ

2
n sinβnl −Dnβ

2
n cosβnl = 0

(3.168)

The matrix form of these equations is presented below⎡⎢⎢⎣
0 1 0 1
1 0 1 0

sinhβnl coshβnl sinβnl cosβnl
sinhβnl coshβnl -sinβnl -cosβnl

⎤⎥⎥⎦
⎡⎢⎢⎣

An

Bn

Cn

Dn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦
(3.169)

The non-zero solution of this set of equations exists if and only if its characteristic
determinant is equal to zero.¯̄̄̄

¯̄̄̄ 0 1 0 1
1 0 1 0

sinhβnl coshβnl sinβnl cosβnl
sinhβnl coshβnl − sinβnl − cosβnl

¯̄̄̄
¯̄̄̄ = 0 (3.170)

A development of the above determinant results in the following equation for the
unknown parameter βnl

βnl sinhβnl cosβnl − sinβnl coshβnl = 0 (3.171)

where:
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βn =

r
ωn

λ
λ =

EJ

Aρ
(3.172)

The roots βnl of the equation 3.171 allows the natural frequences to be produced

ωn = λβ2n = λ
(βnl)

2

l2
=

EJ

Aρl2
(βnl)

2 (3.173)
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Problem 47

ρ , E, A 

l

1

z

2

k

Figure 23

The uniform rod 1 shown in Fig. 23 is supported by means of the massless
spring of stiffness k.

Produce the equation for the natural frequencies.

Problem 48

y 

z 
l, E, J, A, ρ

l

Figure 24
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The uniform beam is supported as shown in Fig. 24.
Produce:

1. the boundary conditions for the equation (1)
Answer:

for z = 0 (1) Y = 0 (2) Y 00 = 0
for z = l (3) Y 0 = 0 (4) Y 000 = 0
2. the equations for the natural frequencies of this beam

Answer:
cosβl = 0

where β = 4

q
EJ
Aρω2
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Problem 49

ρ1 , G1, JO1 

l 

1 2 

z 

3 

ρ2 , G2, JO2 

Figure 25

The left hand ends of the two shafts (1 and 2) depicted in the Fig. 25 are
welded to a motionless wall. Their right hand ends are welded to the plate 3. The
moment of inertia of the plate about the axis z is I z . This assembly performs the
torsional vibration about axis z. The dynamic properties of the shafts are defined
by their density ρ1 and ρ2 , their shear modulus G1 and G2 and the second polar
moment of area JO1 and JO2 respectively.

Produce the equation for the natural frequencies of the assembly described.
The differential equation of motion of a shaft is.

∂2ϕ(z, t)

∂t2
− λ2

∂2ϕ(z, t)

∂z2
= 0

where

λ2 =
G

ρ

G - shear modulus
ρ — density

Answer:
β1 cot

ωn
λ1
l+β2 cot

ωn
λ2
l = 1; where; β1 =

JO1ρ1
Iz
; β2 =

JO2ρ2
Iz
; λ1 =

q
G1
ρ1
; λ2 =

q
G2
ρ2
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Problem 50

l 

1 2 

z 

T 

y 

m 

a 

Figure 26

The string 1 shown in Fig.26 of length l, density ρ and area of its cross-section
A is under the constant tension T. At the position defined by the distance a the
element 2 is attached. This element can be treated as a particle of mass m.

Produce the equation for the natural frequencies of the system described.
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Solution

   

l

 

 y1(z,t) 

z

T 
  y   

  

a   
  

 y2(z,t) 

T T

azz
tzy

=∂
∂

|
),(1   

azz
tzy

=∂
∂ |),(2   

 y1(z,t)|z=a=y2(z,t)|z=a 

Figure 27

Let the differential equation of motion of the uniform string in the region

0 < z < a (3.174)

be

∂2y1(z, t)

∂t2
− λ2

∂2y1(z, t)

∂z2
= 0 (3.175)

where

λ2 =
T

Aρ
(3.176)

Similarly, in the region
a < z < l (3.177)

the equation of motion is

∂2y2(z, t)

∂t2
− λ2

∂2y2(z, t)

∂z2
= 0 (3.178)

where

λ2 =
T

Aρ
(3.179)

Solutions of the above equations are of the following form

y1n(z, t) = Y1n(z) sinωnt (3.180)

y2n(z, t) = Y2n(z) sinωnt (3.181)

where ωn stands for the natural frequency that is common for both parts of the string.
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These solutions must fulfil boundary conditions (z = 0, z = l) and compati-
bility conditions at z = a. They are

y1n(z, t) |z=0 = 0 (3.182)

y1n(z, t) |z=a = y2n(z, t) |z=a (3.183)

m
∂2y1(z, t)

∂t2

¯̄̄̄
z=a

= −T ∂y1(z, t)

∂z

¯̄̄̄
z=a

+ T
∂y2(z, t)

∂z

¯̄̄̄
z=a

(3.184)

y2n(z, t) |z=l = 0 (3.185)

Introduction of the solutions 3.180 and 3.181 into the equations 3.175 and 3.178
results in the following set of differential equations

Y
00
1n(z) + β2nY1n(z) = 0 (3.186)

Y
00
2n(z) + β2nY2n(z) = 0 (3.187)

where

β2n =
ω2n
λ2
=

Aρω2n
T

(3.188)

The general solution of these equations can be predicted as follows

Y1n(z) = S1n sinβnz + C1n cosβnz (3.189)

Y2n(z) = S2n sinβnz + C2n cosβnz (3.190)

Introduction of the solutions 3.180 into the conditions 3.181 yields

Y1n(z) |z=0 = 0 (3.191)

Y1n(z) |z=a = Y2n(z) |z=a (3.192)

−mω2nY1n(z)
¯̄
z=a

= −TY 0
1n(z)

¯̄̄
z=a

+ TY
0
2n(z)

¯̄̄
z=a

(3.193)

Y2n(z) |z=l = 0 (3.194)

Introduction of the solutions 3.189 and 3.190 into the conditions above one can get
the following set of homogeneous linear equations

(0)S1n + (1)C1n + (0)S2n + (0)C2n = 0
(sinβna)S1n + (cosβna)C1n − (sinβna)S2n − (cosβna)C2n = 0

(−mω2n sinβna+ Tβn cos βna)S1n + (−mω2n sinβna− Tβn sinβna)C1n +
− (Tβn cosβna)S2n + (Tβn sinβna)C2n = 0

(0)S1n + (0)C1n + (sinβnl)S2n + (cosβnl)C2n = 0
(3.195)

This set of equations possesses non-trivial solutions if and only if its characteristic
determinant is equal to zero.¯̄̄̄
¯̄̄̄
¯̄

0 1 0 0
sinβna cosβna − sinβna − cosβna

−mω2n sinβna+
+Tβn cosβna

−mω2n sinβna+
−Tβn sinβna −Tβn cos βna Tβn sinβna

0 0 sinβnl cosβnl

¯̄̄̄
¯̄̄̄
¯̄ = 0
(3.196)
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Roots βn of the above equation, with help of the relationship 3.188 allow the
natural frequencies to be produced

ωn = βn

s
T

Aρ
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Problem 51

ρ1, A1 

l2 

1 2 
z 

T 

y 

l1 

ρ2, A2 

Figure 28

Two strings of length l1 and l2 are loaded with tension T . Their dynamic
properties are determined by the density ( and the area of their cross-section A.

Produce the natural frequencies of the system described and the corresponding
natural modes
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Solution
Let the differential equation of motion of the uniform string in the region

0 < z < l1 (3.197)

be
∂2y1(z, t)

∂t2
− λ2

∂2y1(z, t)

∂z2
= 0 (3.198)

where

λ21 =
T

A1ρ1
(3.199)

Similarly, in the region
l1 < z < l1 + l2 (3.200)

the equation of motion is

∂2y2(z, t)

∂t2
− λ2

∂2y2(z, t)

∂z2
= 0 (3.201)

where

λ22 =
T

A2ρ2
(3.202)

Solutions of the above equations are of the following form

y1n(z, t) = Y1n(z) sinωnt

y2n(z, t) = Y2n(z) sinωnt (3.203)

These solutions must fulfil boundary conditions (z = 0, z = l1+ l2) and compatibility
conditions at z = l1. They are

y1n(z, t) |z=0 = 0

y1n(z, t) |z=l1 = y2n(z, t) |z=l1+l2
dm

∂2y1(z, t)

∂t2

¯̄̄̄
z=l1

= −T ∂y1(z, t)

∂z

¯̄̄̄
z=l1

+ T
∂y2(z, t)

∂z

¯̄̄̄
z=l1

(3.204)

y2n(z, t) |z=l1+l2 = 0

The third condition we are getting by application of the Newton law to the element
of the string associated with z = l1. Since dm stands for an infinitesimal mass of this
element, the above conditions can rewritten as follows

y1n(z, t) |z=0 = 0

y1n(z, t) |z=l1 = y2n(z, t) |z=l1+l2
− ∂y1(z, t)

∂z

¯̄̄̄
z=l1

+
∂y2(z, t)

∂z

¯̄̄̄
z=l1

= 0 (3.205)

y2n(z, t) |z=l1+l2 = 0
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Introduction of the solutions 3.203 into the equations 3.198 and 3.201 results in the
following set of differential equations

Y
00
1n(z) + β2n1Y1n(z) = 0 (3.206)

Y
00
2n(z) + β2n2Y2n(z) = 0 (3.207)

where

β21n =
ω2n
λ21
=

A1ρ1ω
2
n

T
; β22n =

ω2n
λ22
=

A2ρ2ω
2
n

T
(3.208)

The general solution of these equations can be predicted as follows

Y1n(z) = S1n sinβ1nz + C1n cosβ1nz (3.209)

Y2n(z) = S2n sinβ2nz + C2n cosβ2nz (3.210)

Introduction of the solutions 3.203 into the conditions 3.205 yields

Y1n(z) |z=0 = 0

Y1n(z) |z=l1 = Y2n(z) |z=l1
−Y 0

1n(z)
¯̄̄
z=l1

+ Y
0
2n(z)

¯̄̄
z=l1

= 0 (3.211)

Y2n(z) |z=l1+l2 = 0

Introduction of the solutions 3.209 and 3.210 into the conditions above one can get
the following set of homogeneous linear equations

(0)S1n + (1)C1n + (0)S2n + (0)C2n = 0
(sinβ1nl1)S1n + (cosβ1nl1)C1n − (sinβ2nl1)S2n − (cosβ2nl1)C2n = 0

(β1n cosβ1nl1)S1n − (β1n sinβ1nl1)C1n − (β2n cosβ2nl1)S2n + (β2n sinβ2nl1)C2n = 0
(0)S1n + (0)C1n + (sinβ2n(l1 + l2))S2n + (cosβ2n(l1 + l2))C2n = 0

(3.212)
This set of equations possesses non-trivial solutions if and only if its characteristic
determinant is equal to zero.¯̄̄̄

¯̄̄̄ 0 1 0 0
sinβ1nl1 cosβ1nl1 − sinβ2nl1 − cos β2nl1

β1n cosβ1nl1 −β1n sinβ1nl1 −β2n cosβ2nl1 +β2n sinβ2nl1
0 0 sinβ2n(l1 + l2) cosβ2n(l1 + l2)

¯̄̄̄
¯̄̄̄ = 0 (3.213)

Introducing 3.208 into the above equation we haveβ1n =
ωn
λ2¯̄̄̄

¯̄̄̄ 0 1 0 0
sin ωn

λ1
l1 cos ωn

λ1
l1 − sin ωn

λ2
l1 − cos ωn

λ2
l1

ωn
λ1
cos ωn

λ1
l1 −ωn

λ1
sin ωn

λ1
l1 −ωn

λ2
cos ωn

λ2
l1 +ωn

λ2
sin ωn

λ2
l1

0 0 sin ωn
λ2
(l1 + l2) cos ωn

λ2
(l1 + l2)

¯̄̄̄
¯̄̄̄ = 0 (3.214)

Now, the equation can be solved for the natural frequencies of the string. The solution
is presented for the following set of numerical data.



ANALYSIS OF CONTINUOUS SYSTEMS 211

l1 = .5m, l2 = 1.m, (1 = (2 = 7800kg/m
3, A1 = 2 · 10−6m2, A2 = 1 · 10−6m2,

T = 500N.

λ1 =
q

T
A1ρ1

q
500

2·10−67800 = 179.03m/s, λ2 =
q

T
A2ρ2

=
q

500
1·10−67800 = 253.18m/s

¯̄̄̄
¯̄̄̄ 0 1 0 0

sin
¡

.5
179

ωn

¢
cos
¡

.5
179

ωn

¢ − sin ¡ .5
253

ωn

¢ − cos ¡ .5
253

ωn

¢
1
179
cos
¡

.5
179

ωn

¢ − 1
179
sin
¡

.5
179

ωn

¢ − 1
253
cos
¡

.5
253

ωn

¢
+ 1
253
sin
¡

.5
253

ωn

¢
0 0 sin

¡
1
253.
(.5 + 1.)ωn

¢
cos
¡
1
253
(.5 + 1.)ωn

¢
¯̄̄̄
¯̄̄̄ = 0
(3.215)

The magnitude of the determinant as a function of the frequency ωn is presented in
Fig. 29

25002000150010005000

10

5

0

-5

-10

frequency [rad/s]frequency [rad/s]

Figure 29

It allows the natural frequencies to be determined. They are

ω1 = 483; ω2 = 920; ω3 = 1437; ω4 = 1861; ω5 = 2344[rad/s] (3.216)

The so far unknown constants S1n, C1n, S2n, C2n can be computed from the homo-
geneous set of linear equations 3.212. From the first equation one can see that the
constant C1n must be equal to zero

C1n = 0

(sinβ1nl1)S1n − (sinβ2nl1)S2n − (cosβ2nl1)C2n = 0
(β1n cosβ1nl1)S1n − (β2n cosβ2nl1)S2n + (β2n sinβ2nl1)C2n = 0

(0)S1n + (sinβ2n(l1 + l2))S2n + (cosβ2n(l1 + l2))C2n = 0
(3.217)
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Since the equations is linearly dependent for roots of its characteristic determinant,
one of them must be crossed out and one of the constant can be assumed arbitrarily.
Hence let us crossed out the second equation and assume C2n = 1.

C2n = 1

The set of equations for determination of the remaining constants S1n and S2nis

(sinβ1nl1)S1n − (sinβ2nl1)S2n = cosβ2nl1
(0)S1n + (sinβ2n(l1 + l2))S2n = − cosβ2n(l1 + l2)

Hence

S2n =
− cosβ2n(l1 + l2)

sinβ2n(l1 + l2)

S1n =
cos β2nl1 − (sinβ2nl1) cos β2n(l1+l2)sinβ2n(l1+l2)

(sinβ1nl1)

For n = 1, 2, 3 the constants S1n and S2nare
n = 1

ω1 = 483;β11 =
ω1
λ1
= 483

179.03
= 2.697 β21 =

ω1
λ2
= 483

253.18
= 1.91

S11 =
cosβ21l1−(sinβ21l1) cosβ21(l1+l2)sin β21(l1+l2)

(sinβ11l1)
=

cos 1.907·0.5−(sin 1.907·0.5) cos 1.907·1.5
sin 1.907·1.5

(sin 2.697·0.5) = 3.48

S21 =
− cos β21(l1+l2)
sinβ21(l1+l2)

= − cos 1.907·1.5
sin 1.907·1.5 = 3.46Y11(z)

Y11(z) = S11 sinβ11z = 3.48 sin 2.697z for 0 < z < 0.5
Y21(z) = S21 sinβ21z + 1 cosβ21z = 3.46 sin 1.91z + 1 cos 1.91z for 0.5 < z < 1.5

n = 2

ω2 = 920; β12 =
ω2
λ1
= 920

179.03
= 5.13 β22 =

ω2
λ2
= 920

253.18
= 3.63

S12 =
cosβ22l1−(sinβ22l1) cos β22(l1+l2)sin β22(l1+l2)

(sinβ12l1)
=

cos 3.63·0.5−(sin 3.63·0.5) cos 3.63·1.5
sin 3.63·1.5

(sin 5.13·0.5) = 1.15

S22 =
− cosβ22(l1+l2)
sinβ22(l1+l2)

= − cos 3.63·1.5
sin 3.63·1.5 = 0.899

Y12(z) = S12 sinβ12z = 1.15 sin 5.13z for 0 < z < 0.5
Y22(z) = S22 sinβ22z + 1 cosβ22z = 0.899 sin 3.63z + 1cos 3.63z for0.5 < z < 1.5

n = 3

ω3 = 1437; β13 =
ω3
λ1
= 1437

179.03
= 8.026 β23 =

ω3
λ2
= 1437

253.18
= 5.67

S13 =
cosβ23l1−(sinβ23l1) cos β23(l1+l2)sin β23(l1+l2)

(sinβ13l1)
=

cos 5.675·0.5−(sin 5.675·0.5) cos 5.675·1.5
sin 5.675·1.5

(sin 8.026·0.5) = 0.944

S23 =
− cosβ23(l1+l2)
sinβ23(l1+l2)

= − cos 5.675·1.5
sin 5.675·1.5 = 0.773

Y13(z) = S13 sinβ13z = 0.944 sin 8.026z for 0 < z < 0.5
Y23(z) = S23 sinβ23z + 1 cosβ23z = 0.773 sin 5.67z + 1cos 5.67z for 0.5 < z < 1.5

A plot of the natural modes is shown in Fig. 30
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3.3 DISCRETE MODEL OF THE FREE-FREE BEAMS

The commercially available computer packages allow to produce stiffness and inertia
matrix of free in space beam along coordinates yn and ϕyn (see Fig. 31) associated
with an arbitrary chosen number N of points. These distinguished points n are called
nodes.The most popular approaches for creation of the stiffness and inertia matrices

1      2 .........    n    ..............................................................  N  

yn

ϕ
ny

Figure 31

are called Rigid Element Method and Finite Element Method.

3.3.1 Rigid Elements Method.
Inertia and stiffness matrix for the free-free beam

According to the Rigid Element Method, the beam is divided into a sufficient, for
necessary accuracy, number of segments I of constant cross-section (Fig . 32a))The
bending and shearing properties of each segment are represented by two springs of
stiffness kMi and kTi respectively (Fig. 32.b). Equivalence of both, the actual element
(Fig. 33a) and its model (Fig. 33b) requires equal angular deflection ( δri = δei )
caused by the same bending moment Mi.

Since:

δri =
Mili
2EJi

and δei =
Mi

2kMi

(3.218)

the bending stiffness is

kMi
=

EJi
li

(3.219)

Similarly, the equivalence of shearing deflections (yri = yei) caused by the same
shearing force Ti (Fig. 33c and Fig. 33d)

yri = liγri =
Tili
GAi

and yei =
Ti
kTi

(3.220)

yields

kTi =
GAi

li
(3.221)

The right hand part of the segment li−1 and the left hand part of the subsequent
segment li , form a section (Fig. 32c). Each section is considered rigid and its
inertia properties are represented by mass mi and moments of inertia Ii. In this
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way a complete symmetry is obtained that gives simple programming for computer
analysis.

Application of the Lagrange’s equations to the physical model is shown in Fig.
32d) results in the following equations of motion.

mÿ + ky = 0 (3.222)

where:

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1,1 .. 0 0 0 .. 0
.̇ .̇.̇ .̇ .̇ .̇ .̇.̇ .̇
0 .. Mi−1,i−1 0 0 .. 0
0 .. 0 Mi,i 0 .. 0
0 .. 0 0 Mi+1,i+1 .. 0
.̇ .̇.̇ .̇ .̇ .̇ .̇.̇ .̇
0 .. 0 0 0 .. MN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.223)

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1 .. 0 0 0 .. 0
.̇ .̇.̇ .̇ .̇ .̇ .̇.̇ .̇
0 .. Ki−1,i−1 Ki−1,i 0 .. 0
0 .. Ki,i−1 Ki,i Ki,i+1 .. 0
0 .. 0 Ki+1,i Ki+1,i+1 .. 0
.̇ .̇.̇ .̇ .̇ .̇ .̇.̇ .̇
0 .. 0 0 0 .. KN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.224)

yb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
:
yi−1
yi
yi+1
:
yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.225)

N = I + 1 (3.226)

Mi,i =

∙
mi 0
0 Ii

¸
(3.227)

Ki,i−1 =
∙ −kTi−1 −kTi−1zri−1
+kTi−1zli −kMi−1 + kTi−1zri−1zli

¸
(3.228)

Ki,i =

∙
+kTi−1 + kTi +kTi−1zli + kTizri
+kTi−1zli + kTizri +kMi−1 + kTi−1z

2
li
+ kTiz

2
ri

¸
(3.229)

Ki,i+1 =

∙ −kTi +kTizli+1
−kTizri −kMi + kTizli+1zri

¸
(3.230)

yi =

∙
yi
ϕyi

¸
(3.231)

The geometrical interpretation of the vector of coordinates 3.231 is given in Fig.
34.The coordinates yi, ϕyi are associated with nodes which are located at the centre
of gravity of the rigid elements.
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Figure 34

Introduction of the external forces

If there is a set of forces acting on the rigid element, each of them (e.g. Fi) can be
equivalently replaced by the force Fi applied to the node Oi and the moment Mi =
ai · Fi as shown in Fig. 35This equivalent set of forces along the nodal coordinates

z 

y 

element i 

node i 
y i ϕ yi 

O i 

a i 

F i 

F i 
M i 

Figure 35

yi, ϕyi should be added to the mathematical model 3.232. In a general case these forces
can be independent of time (static forces) or they can depend on time (excitation
forces). Introducing notations Fs for the static forces and F(t) for the excitation
forces, the equation of motion of the free-free beam takes the following form.

mÿ + ky = Fs + F(t) (3.232)

3.3.2 Finite Elements Method.
Inertia and stiffness matrix for the free-free beam

According to the Finite Elements Method, the shaft is divided into a number of the
uniform and flexible elements. The i− th element is shown in Fig. 36.
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In this figure Ei, Ji, Ai, and ρi stand for Young modulus, second moment of
area about the neutral axis, area of cross-section and the unit mass of the element.
The differential equation of the statically deflected line of the element in the plane
yz is

EiJi
d4y(z)

dz4
= 0 (3.233)

Integration of the above equation four times yields

y(z) =
1

6
C1z

3 +
1

2
C2z

2 + C3z + C4 (3.234)

The constants of integration Cj (j = 1, 2, 3, 4) must be chosen to fulfill the following
boundary conditions

y(z)|z=0 = yi1;
dy(z)

dz

¯̄̄̄
z=0

= ϕyi1 y(z)|z=li = yi2;
dy(z)

dz

¯̄̄̄
z=li

= ϕyi2 (3.235)

The parameters yi1 and yi2 are called nodal displacements and the parameters ϕi1

and ϕi2 are called nodal rotations. The nodes are denoted by numbers 1 and 2. Intro-
duction of solution 3.234 into the above boundary conditions results in the following
set of algebraic equations linear with respect to the constants Cj.⎡⎢⎢⎣

0 0 0 1
0 0 1 0
1
6
l3i

1
2
l2i li 1

1
2
l2i li 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

C1
C2
C3
C4

⎤⎥⎥⎦ =
⎡⎢⎢⎣

yi1
ϕyi1

yi2
ϕyi2

⎤⎥⎥⎦ (3.236)

Its solution yields the integration constants Cj.⎡⎢⎢⎣
C1
C2
C3
C4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0 0 1
0 0 1 0
1
6
l3i

1
2
l2i li 1

1
2
l2i li 1 0

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

yi1
ϕyi1

yi2
ϕyi2

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

6
l3i
(2yi1 + liϕyi1 − 2yi2 + liϕyi2)

2
l2i
(−3yi1 − 2liϕyi1 + 3yi2 − liϕyi2)

ϕyi1

yi1

⎤⎥⎥⎥⎦
(3.237)
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After introduction of Eq. 3.237 into the equation of the deflected line 3.234 one may
get it in the following form.

y(z) =

"
1− 3

µ
z

li

¶2
+ 2

µ
z

li

¶3#
yi1 +

"µ
z

li

¶
− 2

µ
z

li

¶2
+

µ
z

li

¶3#
liϕyi1

+

"
3

µ
z

li

¶2
− 2

µ
z

li

¶3#
yi2 +

"
−
µ
z

li

¶2
+

µ
z

li

¶3#
liϕyi2

= {H(z)}T {y} (3.238)

where:

{H(z)} =

⎧⎪⎪⎨⎪⎪⎩
H1

H2li
H3

H4li

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 3
³
z
li

´2
+ 2

³
z
li

´3∙³
z
li

´
− 2

³
z
li

´2
+
³
z
li

´3¸
li

3
³
z
li

´2
− 2

³
z
li

´3∙
−
³
z
li

´2
+
³
z
li

´3¸
li

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.239)

{y} =

⎧⎪⎪⎨⎪⎪⎩
yi1
ϕyi1

yi2
ϕyi2

⎫⎪⎪⎬⎪⎪⎭ (3.240)

Functions H1, H2, H3, H4 (see Eq. 3.239) are known as Hermite cubics or shape func-
tions. The matrix {y} contains the nodal coordinates. As it can be seen from Eq.
3.238 the deflected line of the finite element is assembled of terms which are linear
with respect to the nodal coordinates.

If the finite element performs motion with respect to the stationary system of
coordinates xyz, it is assumed that the motion in the plane yz can be approximated
by the following equation.

y(z, t) = {H(z)}T {y (t)} (3.241)

As one can see from the equation 3.241, the dynamic deflection line is approximated
by the static deflection line. It should be noted that this assumption is acceptable
only if the considered element is reasonably short.

The following mathematical manipulations are aimed to replace the continues
mathematical model of the element considered

EiJi
∂4y(z, t)

∂z4
− ρi

∂2y(z, t)

∂t2
= 0 (3.242)

by its discreet representation along the nodal coordinates

[mi] {ÿ (t)}+ [ki] {y (t)} = 0. (3.243)

In the above equations ρi stands for the unit mass of the finite element and [mi] and
[ki] stands for the inertia and stiffness matrix respectively. These two matrices are
going to be developed from the two following criterions:
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1. The kinetic energy of the continues physical model of the finite element
must be equal to the kinetic energy of its discreet physical model.

2. The potential energy of the continues physical model of the finite element
must be equal to the potential energy of its discreet physical model.

The kinetic energy of the continues physical model of the finite element is

T =
1

2

Z li

0

ρi

µ
∂y(z, t)

∂t

¶2
dz

=
1

2

Z li

0

ρi

µ
∂y(z, t)

∂t

¶µ
∂y(z, t)

∂t

¶
dz

=
1

2

Z li

0

ρi

³
{ẏ (t)}T {H(z)}

´³
{H(z)}T {ẏ (t)}

´
dz

=
1

2
{ẏ (t)}T

∙
ρi

Z li

0

{H(z)} {H(z)}T dz
¸
{ẏ (t)}

=
1

2
{ẏ (t)}T

⎛⎜⎜⎝ρi

Z li

0

⎡⎢⎢⎣
H2
1 H1H2li H1H3 H1H4li

H2H1li H2
2 l
2
i H2H3li H2H4l

2
i

H3H1 H3H2li H2
3 H3H4li

H4H11li H4H2l
2
i H4H3li H2

4 l
2
i

⎤⎥⎥⎦ dz
⎞⎟⎟⎠ {ẏ (t)}

(3.244)

It is easy to see that the last row of Eq. 3.244 represents kinetic energy function
of the discreet physical model along the nodal coordinates yi1 ϕyi1 yi2 ϕyi2 with
the following matrix of inertia.

mi = ρi

Z li

0

⎡⎢⎢⎣
H2
1 H1H2li H1H3 H1H4li

H2H1li H2
2 l
2
i H2H3li H2H4l

2
i

H3H1 H3H2li H2
3 H3H4li

H4H1li H4H2l
2
i H4H3li H2

4 l
2
i

⎤⎥⎥⎦ dz

= ρili

⎡⎢⎢⎣
13
35

11
210

li
9
70

− 13
420

li
11
210

li
1
105

l2i
13
420

li − 1
140

l2i
9
70

13
420

li
13
35

− 11
210

li
− 13
420

li − 1
140

l2i − 11
210

li
1
105

l2i

⎤⎥⎥⎦

= mi

⎡⎢⎢⎣
13
35

11
210

li
9
70

− 13
420

li
11
210

li
1
105

l2i
13
420

li − 1
140

l2i
9
70

13
420

li
13
35

− 11
210

li
− 13
420

li − 1
140

l2i − 11
210

li
1
105

l2i

⎤⎥⎥⎦ (3.245)

In the last formula mi stands for mass of the finite element.
To take advantage of the second criterion let us produce expression for the
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potential energy function for the continues physical model of the finite element.

V =
1

2

Z li

0

EiJi

µ
∂2y(z, t)

∂z2

¶2
dz

=
1

2

Z li

0

EiJi

µ
∂2y(z, t)

∂z2

¶µ
∂2y(z, t)

∂z2

¶
dz

=
1

2

Z li

0

EiJi

µ
{y (t)}T

½
d2H(z)

dz2

¾¶Ã½
d2H(z)

dz2

¾T

{y (t)}
!
dz

=
1

2
{y (t)}T

"
EiJi

Z li

0

½
d2H(z)

dz2

¾½
d2H(z)

dz2

¾T

dz

#
{y (t)}

=
1

2
{y (t)}T

⎛⎜⎜⎝EiJi

Z li

0

⎡⎢⎢⎣
¡
H

00
1

¢2
H

00
1H

00
2 li H

00
1H

00
3 H

00
1H

00
4 li

H
00
2H

00
1 li (H

00
2 )
2l2i H

00
2H

00
3 li H

00
2H

00
4 l
2
i

H
00
3H

00
1 H

00
3H

00
2 li (H

00
3 )
2 H

00
3H

00
4 li

H
00
4H

00
1 li H

00
4H

00
2 l
2
i H

00
4H

00
3 li (H

00
4 )
2l2i

⎤⎥⎥⎦ dz
⎞⎟⎟⎠ {y (t)}
(3.246)

As one can see from Eq. 3.246, to fulfill the second criterion, the stiffness matrix
along the nodal coordinates yi1 ϕyi1 yi2 ϕyi2 must be as follows.

ki = EiJi

Z li

0

⎡⎢⎢⎣
¡
H

00
1

¢2
H

00
1H

00
2 li H

00
1H

00
3 H

00
1H

00
4 li

H
00
2H

00
1 li (H

00
2 )
2l2i H

00
2H

00
3 li H

00
2H

00
4 l
2
i

H
00
3H

00
1 H

00
3H

00
2 li (H

00
3 )
2 H

00
3H

00
4 li

H
00
4H

00
1 li H

00
4H

00
2 l
2
i H

00
4H

00
3 li (H

00
4 )
2l2i

⎤⎥⎥⎦ dz

=
EiJi
l3i

⎡⎢⎢⎣
12 6li −12 6li
6li 4l2i −6li 2l2i
−12 −6li 12 −6li
6li 2l2i −6li 4l2i

⎤⎥⎥⎦ (3.247)

Hence, the mathematical model of the element considered can be written as

miÿi + kiyi = Ryi (3.248)

The vector Ri represents the interaction forces between the neighborhood elements.

Ryi =
£
Ryi1 Rϕyi1 Ryi2 Rϕyi2

¤T
(3.249)

In exactly the same manner one can create mathematical model for the next
to the right hand side element of the shaft, say element j.

mjÿj + kjyj = Ryj (3.250)
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where:

mj = mj

⎡⎢⎢⎣
13
35

11
210

lj
9
70

− 13
420

lj
11
210

lj
1
105

l2j
13
420

lj − 1
140

l2j
9
70

13
420

lj
13
35

− 11
210

lj
− 13
420

lj − 1
140

l2j − 11
210

lj
1
105

l2j

⎤⎥⎥⎦

kj =
EjAj

l3j

⎡⎢⎢⎣
12 6lj −12 6lj
6lj 4l2j −6lj 2l2j
−12 −6lj 12 −6lj
6lj 2l2j −6lj 4l2j

⎤⎥⎥⎦ (3.251)

yj =
£
yj1 ϕyj1 yj2 ϕyj2

¤T
(3.252)

Ryi =
£
Ryj1 Rϕyj1 Ryj2 Rϕyj2

¤T
(3.253)

These two equations of motion (3.248 3.250), associated with the two elements i
and j, haveto fulfill the compatibility (continuity and equilibrium) conditions. These
conditions allow to join those two elements to create one mathematical model rep-
resenting both elements. In the case considered here, the compatibility conditions
between the two elements i and j correspond to the left hand side node of the ele-
ment i and the right hand side node of the element j. For these nodes the continuity
conditions take form ∙

yi2
ϕyi2

¸
=

∙
yj1
ϕyj1

¸
=

∙
yij
ϕyij

¸
(3.254)

and the equilibrium conditions are∙
Ryi2

Rϕyi2

¸
+

∙
Ryj1

Rϕyj1

¸
=

∙
0
0

¸
(3.255)

They results in the following mathematical model of the joint elements.

mijÿij + kijyij = Ryij (3.256)

where:

mij =

⎡⎢⎢⎢⎢⎢⎢⎣

13
35
mi

11
210

limi
9
70
mi − 13

420
limi 0 0

11
210

limi
1
105

l2imi
13
420

limi − 1
140

l2imi 0 0
9
70
mi

13
420

limi
13
35
(mi +mj)

11
210
(−limi+ljmj)

9
70
mj − 13

420
ljmj

− 13
420

limi − 1
140

l2imi
11
210
(−limi+ljmj)

1
105
(l2imi+l

2
jmj)

13
420

ljmj − 1
140

l2jmj

0 0 9
70
mj

13
420

ljmj
13
35
mj − 11

210
ljmj

0 0 − 13
420

ljmj − 1
140

l2jmj − 11
210

ljmj
1
105

l2jmj

⎤⎥⎥⎥⎥⎥⎥⎦
(3.257)
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kij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EiAi

l3i
6EiAi

l2i
−12EiAi

l3i
6EiAi

l2i
0 0

6EiAi
l2i

4EiAi

li
−6EiAi

l2i
2EiAi

li
0 0

−129EiAi
l3i
−6EiAi

l2i
12(EiAi

l3i
+

EjAj
l3j
) 6(−EiAi

l2i
+

EjAj

l2j
) −12EjAj

l3j
6
EjAj

l2j

6EiAi
l2i

2EiAi

li
6(−EiAi

l2i
+

EjAj

l2j
) 4(EiAi

li
+

EjAj
lj
) −6EjAj

l2j
2
EjAj

lj

0 0 −12EjAj

l3j
−6EjAj

l2j
12

EjAj
l3j

−6EjAj
l2j

0 0 6
EjAj
l2j

2
EjAj

lj
−6EjAj

l2j
4
EjAj

lj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.258)

yij =
£
yi1 ϕyi1 yij ϕyij yj2 ϕyj2

¤T
(3.259)

Rij =
£
Ryi1 Rϕyi1 0 0 Ryj2 Rϕyj2

¤T
(3.260)

Repetition of the described procedure to all elements of the shaft results in
the mathematical model of the shaft in the plane yz.

mÿ + ky = 0 (3.261)

The geometrical interpretation of the nodal coordinates appearing in the Eq. 3.259 is
given in Fig. 37.The coordinates yi, ϕyi are associated with nodes which are located

z 

y 

element 1 element N-1 element i 

node 1 node N node i 

y i 
ϕ yi 

O i 

Figure 37

at the ends of the finite elements.

Introduction of the external forces

Since the finite element is considered elastic, the treatment of the external forces
presented in the previous section can not be applied. In this case one has to take
advantage of the principle of the virtual work. It says that the virtual work produced
by a force Fi (see Fig. 38) on the displacement yi is equal to the virtual work produced
by a set of forces along the coordinates yi1 ϕyi1 yi2 ϕyi2. Hence

∂Wi = Fi · yi(ai, t) = {Fi1,Mi1, Fi2,Mi2}

⎧⎪⎪⎨⎪⎪⎩
yi1
ϕyi1

yi2
ϕyi2

⎫⎪⎪⎬⎪⎪⎭ (3.262)
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But according to 3.241

y(ai, t) = {H(ai)}T {y (t)} =
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⎫⎪⎪⎬⎪⎪⎭ (3.263)

Introduction of the above expression into the expression for the virtual work yields

∂Wi = Fi ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎫⎪⎪⎬⎪⎪⎭ (3.264)

Hence, the vector of forces along the nodal coordinates is

⎧⎪⎪⎨⎪⎪⎩
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.265)

This forces have to be introduced into the equation of motion 3.261

mÿ + ky = Fs + F(t) (3.266)

where, similarly as before, Fs stands for the static forces and F(t) stands for the
excitation forces.
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3.4 BOUNDARY CONDITIONS
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Figure 39

Let us assume that the free-free beam is rigidly supported upon several supports Bi

(see Fig. 39). The instantaneous position of these supports is determine with respect
to the stationary system of coordinates xyz by coordinates byi(t) . Let us denote by
b vector of such coordinates.

b =

⎡⎢⎣
...

byi(t)
...

⎤⎥⎦ (3.267)

Let us reorganize vector of coordinates of the shaft

y =
©
ϕxN , y1ϕy1, ......yNϕyN

ªT
(3.268)

in such a way that its upper part yb contains coordinates along which the shaft is
rigidly supported and its lower part yr contains all the remaining coordinates

y =

∙
yb
yr

¸
(3.269)

Let us assume that the mathematical model of the beam

mÿ+ ky = F (3.270)

is organized with respect to the above vector y of coordinates.∙
mbb mbr

mrb mrr

¸ ∙
ÿb
ÿr

¸
+

∙
kbb kbr
krb krr

¸ ∙
yb
yr

¸
=

∙
Fb

Fr

¸
(3.271)

Partitioning of the above equations results in the following set of equations

mbbÿb +mbrÿr + kbbyb + kbryr = Fb

mrbÿb +mrrÿr + krbyb + krryr = Fr (3.272)
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Motion of the beam along the coordinates yb is determined by the boundary condi-
tions 3.267. Hence, the vector yb in the mathematical model 3.272 must be replaced
by b.

mbbb̈+mbrÿr + kbbb+ kbryr = Fb

mrbb̈+mrrÿr + krbb+ krryr = Fr (3.273)

The second equation governs motion of the supported beam and can be rewritten as
follows

mrrÿr + krryr = Fr −mrbb̈b − krsbb (3.274)

The last two terms represent the kinemetic excitation of the beam cause by motion
of its supports. The vector b, in a general case, is a known function of time. Hence
the above equation can be solved. Let

yr = Yr(t) (3.275)

be a solution of this equation. This solution approximate motion of the beam along
the remining coordinates yr.

The vector Fb in the first equation of the set 3.273 represents the forces of
interaction between the moving beam and its supports. These interaction forces can
be now determined.

Fb =mbbb̈+mbrŸr + kbbb+ kbrYr(t) (3.276)

3.5 CONDENSATION OF THE DISCREET SYSTEMS

In meny engineering problems, due to large number of the uniform sections of the
element to be modeld, number of the final elements is large too. It follows that the
size of the matrices involved in the discreet mathematical model

mÿ + cẏ + ky = F (3.277)

is too large to enable the necessary analysis of the mathematical model to be carried
out. In this section the procedures for reducing the size of mathematical models will
be developed.

Let us assume, that the equation 3.277 is arranged in such a way that the
coordinates which are to be eliminated due to the condensation procedure ye are
located in the upper part of the vector y and these which are to be retained for
further consideration yr are located in its lower part.

y =

∙
ye
yr

¸
(3.278)

Partitioning of the equations 3.277 yields∙
mee mer

mre mrr

¸ ∙
ÿe
ÿr

¸
+

∙
cee cer
cre crr

¸ ∙
ẏe
ẏr

¸
+

∙
kee ker
kre krr

¸ ∙
ye
yr

¸
=

∙
Fe

Fr

¸
(3.279)
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To eliminate the coordinates ye from the mathematical model 3.279, one have to
determine the relationship between the coordinates ye and the coordinates yr. One
of many possibilities is to assume that the coordinates ye are obeyed to the static
relationship. ∙

kee ker
kre krr

¸ ∙
ye
yr

¸
=

∙
0
0

¸
(3.280)

Hence, upon partitioning equation 3.280 one may obtain

keeye+keryr= 0 (3.281)

Therefore the sought relationship is

ye= hyr (3.282)

where
h = −k−1ee ker (3.283)

Once the relationship is established, one may formulate the following criteria of con-
densation:

1. Kinetic energy of the system before and after condensation must be the
same.

2. Dissipation function of the system before and after condensation must be
the same.

3. Potential energy of the system before and after condensation must be the
same.

4. Virtual work done by all the external forces before and after condensation
must be the same.
3.5.1 Condensation of the inertia matrix.
According to the first criterion, the kinetic energy of the system before and after
condensation must be the same. The kinetic energy of the system before condensation
is

T =
1

2

£
ẏTe ẏTr

¤ ∙ mee mer

mre mrr

¸ ∙
ẏe
ẏr

¸
=

1

2

¡
ẏTemeeẏe + ẏ

T
emerẏr + ẏ

T
rmreẏe + ẏ

T
rmrrẏr

¢
(3.284)

Introduction of 3.282 yields

T =
1

2

³
[hẏr]

T meehẏr + [hẏr]
T merẏr + ẏ

T
rmrehẏr+ẏ

T
rmrrẏr

´
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2

¡
ẏTr h

Tmeehẏr+ẏ
T
r h

Tmerẏr+ẏ
T
rmrehẏr+ẏ

T
rmrrẏr

¢
=

1

2

¡
ẏTr
£
hTmeeh+ h

Tmer+mreh+mrr

¤
ẏr
¢

(3.285)

Hence, if the kinetic energy after condensation is to be the same, the inertia matrix
after condensation mc must be equal to

mc= h
Tmeeh+ h

Tmer+mreh+mrr (3.286)
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3.5.2 Condensation of the damping matrix.
Since formula for the dissipation function is of the same form as formula for the
kinetic energy, repetition of the above derivation leads to the following definition of
the condensed damping matrix

cc= h
Tceeh+ h

Tcer+creh+ crr (3.287)

3.5.3 Condensation of the stiffness matrix.
Taking advantage from definition of potential energy of the system considered

V =
1

2

£
yTe yTr

¤ ∙ kee ker
kre krr

¸ ∙
ye
yr

¸
=

1

2

¡
yTe keeye + y

T
e keryr + y

T
r kreye + y

T
r krryr

¢
(3.288)

one can arrive to conclusion that the condensed stiffness matrix is of the form 3.289

kc= h
Tkeeh+ h

Tker+kreh+ krr (3.289)

It is easy to show that sum of the first two terms in the above expression is equal to
zero. Indeed, according to 3.283, they can be transformed as following.

hTkeeh+ h
Tker = (−k−1ee ker)Tkee(−k−1ee ker) + (−k−1ee ker)Tker

= −(−k−1ee ker)Tker + (−k−1ee ker)Tker = 0 (3.290)

Hence,
kc= kreh+ krr (3.291)

3.5.4 Condensation of the external forces.
The virtual work performed by external forces F on the displacements y is

δW =
£
yTe yTr

¤ ∙ Fe

Fr

¸
= yTe Fe+y

T
r Fr (3.292)

Introduction of 3.282 into the above equation yields

δW = (hyr)
T Fe+y

T
r Fr =

¡
yTr h

T
¢
Fe+y

T
r Fr= y

T
r

¡
hTFe+Fr

¢
(3.293)

Hence,
Fc=

¡
hTFe+Fr

¢
(3.294)

The condensed mathematical model, according to the above consideration, can be
adopted as follows

mcÿc+ccẏc+kcyc= Fc (3.295)

where
yc= yr (3.296)

The relationship 3.282
ye= hyc

permits to produce displacement along the ’cut off’ coordinates on the base of solution
of the equation 3.295
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3.6 PROBLEMS

Problem 52

Produce the natural frequencies and the corresponding natural modes for the
fixed-elastically supported uniform beam shown in Fig. 40.

z 

l

k 

y 

O

Figure 40

The exact solution of this problem is presented in page 191 for the following
data

E = 2.1× 1011N/m2

ρ = 7800kg/m3

A = 0.03× 0.01 = 0.0003m2

J = 0.03×0.013
12

= 2.5× 10−9m4

k = 10000N/m
l = 1m
α = EJ

k
= 2.1×1011×2.5×10−9

10000
= 0.0525

Use this data to produce the solution by means of approximation of this beam with
10 finite elements.
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Solution
To create the mathematical model of the free-free beam, it was divided into

ten finite elements as shown in Fig. 41. The computed mathematical model is
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Figure 41

mÿ + ky = 0; y = {y1, ϕ1, y2, ϕ2, ......, y11, ϕ11}T (3.297)

The influence of the spring can be represented by the force −ky11 acting along the
coordinate y11 (see Fig. 42).
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This force should be introduced to the right hand side of the equation 3.297.

mÿ+ ky = −

⎡⎢⎢⎢⎢⎣
0
0
....
ky11
0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0 0 .... .... 0
0 0 .... .... 0
.... .... .... .... ....
0 0 .... k 0
0 0 .... 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

y1
ϕ1
....
y11
ϕ11

⎤⎥⎥⎥⎥⎦ = −k1y (3.298)

Therefore, the equation of the beam supported by the spring is

mÿ + ksy = 0 (3.299)
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where

ks = k+ k1 = k+

⎡⎢⎢⎢⎢⎣
0 0 .... .... 0
0 0 .... .... 0
.... .... .... .... ....
0 0 .... k 0
0 0 .... 0 0

⎤⎥⎥⎥⎥⎦ (3.300)

To introduce the boundary conditions associated with the left hand side of the beam,
let us partition the above mathematical model in such a manner that all the coordi-
nates involved in this boundary conditions are included in the vector y1.∙

m11 m12

m21 m22

¸ ∙
ÿ1
ÿ2

¸
+

∙
ks11 ks12
ks21 ks22

¸ ∙
y1
y2

¸
=0 (3.301)

where
y1 = {y1, ϕ1}T y2 = {y2, ϕ2, ...., y11, ϕ11}T (3.302)
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According to the boundary conditions (see Fig. 43)

y1 = {y1, ϕ1}T = {0, 0}T (3.303)

and
R1 = {R,M}T (3.304)

Introduction of 3.303 and 3.304 into 3.301 yields∙
m11 m12

m21 m22

¸ ∙
0
ÿ2

¸
+

∙
ks11 ks12
ks21 ks22

¸ ∙
0
y2

¸
=

∙
R1

0

¸
(3.305)

This equation is equivalent to two equations as follows

m12ÿ2 + ks12y2 = R1 (3.306)

m22ÿ2 + ks22y2 = 0 (3.307)
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The second equation 3.307 is the equation of motion of the supported beam. It was
solved for the natural modes and the natural frequencies. Results of this computation
is shown in Fig. 44 by boxes and in the first column of the Table below. This results
are compare with natural modes (continuous line in Fig. 44) and natural frequencies
(second column in the Table) obtained by solving the continuous mathematical model
( see problem page 190). The equation 3.306 allows the vector of the interation forces
R1 to be computed.
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Figure 44

Table
natural frequenciesof
the descreet system

[1/sec]

natural frequencies of
the continuous system

[1/sec]
1 129.5 129.65
2 357.6 357.3
3 933.4 932.0
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Problem 53

The mathematical model of a free-free beam shown in Fig. 45 along coordi-
nates x1, x2, x3, x4 is as follows

mẍ+ kx = 0 (3.308)

m =

⎡⎢⎢⎣
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤⎥⎥⎦ ; k =

⎡⎢⎢⎣
k11 k12 k13 m14

k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

⎤⎥⎥⎦ ; x =

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦
(3.309)
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Figure 45

This beam is supported upon three rigid pedestals along coordinates x1, x2, x3
as shown in Fig. 46.
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Figure 46

The motion of these supports with respect to the inertial system of coordinate
XZ is given by the following equations

X1 = 0

X2 = a2 sinωt

X3 = a3 (3.310)

Derive expressions for :
1. the static deflection curve,
2. the interaction forces between the beam and the supports
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Solution
Partitioning of the equations 3.308 with respect to the vector of boundary

conditions 3.310 results in the following equation

mẍ+ kx = R (3.311)

where ∙
m11 m12

m21 m22

¸ ∙
ẍ1
ẍ2

¸
+

∙
k11 k12
k21 k22

¸ ∙
x1
x2

¸
=

∙
R1

R2

¸
(3.312)

m11=

⎡⎣ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤⎦ ; m12=

⎡⎣ m14

m24

m34

⎤⎦ ; m21=
£
m41 m42 m43

¤
; m22= m44

(3.313)

k11=

⎡⎣ k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤⎦ ; k12=

⎡⎣ k14
k24
k34

⎤⎦ ; k21=
£
k41 k42 k43

¤
; k22= k44

(3.314)

x1=

⎡⎣ x1
x2
x3

⎤⎦ ; x2=x4; R1=

⎡⎣ R1
R2
R3

⎤⎦ ; R2=0 (3.315)

or
m11ẍ1 +m12ẍ2 + k11x1 + k12x2 = R1 (3.316)

m21ẍ1 +m22ẍ2 + k21x1 + k22x2 = 0 (3.317)

Introduction of boundary conditions 3.310 into the equation 3.317 yields

m44ẍ4 + k44x4 = −
£
m41 m42 m43

¤⎡⎣ ẍ1
ẍ2
ẍ3

⎤⎦− £ k41 k42 k43
¤⎡⎣ x1

x2
x3

⎤⎦ (3.318)

where ⎡⎣ ẍ1
ẍ2
ẍ3

⎤⎦ =
⎡⎣ 0
−a2ω2 sinωt

0

⎤⎦ ;
⎡⎣ x1

x2
x3

⎤⎦ =
⎡⎣ 0

a2 sinωt
a3

⎤⎦ (3.319)

or
m44ẍ4 + k44x4 = (m42a2ω

2 − k42a2) sinωt− k43a3 (3.320)

The static deflection is due to the time independent term −k43a3 in the right hand
side of the equation 3.320.

m44ẍ4 + k44x4 = −k43a3 (3.321)

The particular solution of the equation 3.321 is

x4 = xs (3.322)

k44xs = −k43a3 (3.323)
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xs =
−k43a3
k44

(3.324)

Its graphical representation is given in Fig. 47
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Figure 47

The forced response due to motion of the support 2 (X2 = a2 sinωt) is repre-
sented by the particular solution due to the time dependant term.

m44ẍ4 + k44x4 = (m42a2ω
2 − k42a2) sinωt (3.325)

For the above equation, the particular solution may be predicted as follows

x4 = xd sinωt (3.326)

Implementation of the solution 3.326 into the equation 3.325 yields the wanted am-
plitude of the forced vibration xd.

xd =
(m42a2ω

2 − k42a2)

−ω2m44 + k44
(3.327)

The resultant motion of the system considered is shown in Fig. 48
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Figure 48

This motion causes interaction forces along these coordinates along which the
system is attached to the base. These forces can computed from equation 3.316.

m11ẍ1 +m12ẍ2 + k11x1 + k12x2 = R1 (3.328)

In this equation x1 stands for the given boundary conditions

x1 =

⎡⎣ x1
x2
x3

⎤⎦ =
⎡⎣ 0

a2 sinωt
a3

⎤⎦ ; ẍ1=

⎡⎣ ẍ1
ẍ2
ẍ3

⎤⎦ =
⎡⎣ 0
−a2ω2 sinωt

0

⎤⎦ (3.329)
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and x2 represents, known at this stage, motion of the system along the coordinate 4

x2 = x4 = xs + xd sinωt ẍ2 = ẍ4 =
d2

dt2
(xs + xd sinωt) = −xdω2 sinωt; (3.330)

Hence, the wanted vector of interaction forces is as follows

R1 =m11

⎡⎣ 0
−a2ω2 sinωt

0

⎤⎦+k11
⎡⎣ 0

a2 sinωt
a3

⎤⎦+m12(−xdω2 sinω)+k12(xs+xd sinωt)

(3.331)
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Chapter 4

MODAL ANALYSIS OF A SYSTEM WITH 3 DEGREES OF
FREEDOM

4.1 DESCRIPTION OF THE LABORATORY INSTALLATION

1 2 34 5 6 7 8

9 10 12

Figure 1

The vibrating object 2, 3, and 4 (see Fig.1) is attached to the base 1. It consists
of the three rectangular blocks 2 joint together by means of the two springs 3. The
spaces between the blocks 2 are filled in with the foam 4 in order to increase the
structural damping. The transducer 5 allows the acceleration of the highest block to
be measured in the horizontal direction. The hammer 6 is used to induce vibrations
of the object. It is furnished with the piezoelectric transducer 7 that permits the
impulse of the force applied to the object to be measured. The rubber tip 8 is used
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to smooth and extend the impulse of force. Both, the acceleration of the object and
the impulse of the force can be simultaneously recorded and stored in the memory
of the spectrum analyzer 10. These data allow the transfer functions to be produced
and sent to the personal computer 11 for further analysis.

4.2 MODELLING OF THE OBJECT

4.2.1 Physical model

 

x3 m3

k3

c3

x2 m2

k2

c2

x1 m1

k1

c1

Figure 2

The base 1, which is considered rigid and motionless, forms a reference system
for measuring its vibrations. The blocks 2 are assumed to be rigid and the springs 3 are
by assumption massless. Motion of the blocks is restricted to one horizontal direction
only. Hence, according to these assumptions, the system can be approximated by
three degrees of freedom physical model. The three independent coordinates x1, x2
and x3 are shown in Fig.2. Magnitudes of the stuffiness k1, k2 and k3 of the springs
can be analytically assessed. To this end let us consider one spring shown in Fig. 3
The differential equation of the deflection of the spring is

EJ
d2x

dz2
=M − Fz =

FH

2
− Fz (4.1)

Double integration results in the following equation of the bending line.

EJ
dx

dz
=

FH

2
z − F

2
z2 +A (4.2)

EJx =
FH

4
z2 − F

6
z3 +Az +B (4.3)
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Figure 3

Taking advantage of the boundary conditions associated with the lower end of the
spring, one can arrived to the following expression for the bending line.

x =
1

EJ

µ
FH

4
z2 − F

6
z3
¶

(4.4)

Hence, the deflection of the upper end is

x(H) =
1

EJ

µ
FH

4
H2 − F

6
H3

¶
=

1

12EJ
FH3 (4.5)

Therefore the stiffness of one spring is

k =
F

x(H)
=
12EJ

H3
(4.6)

where

J =
wt3

12
(4.7)

Since we deal with a set of two springs between the blocks, the stiffness ki shown in
the physical model can be computed according to the following formula.

ki =
24EiJi
H3

i

(4.8)

4.2.2 Mathematical model
Application of the Newton’s equations to the developed physical model results in the
following set of differential equations

m1ẍ1 + (c1 + c2)ẋ1 + (−c2)ẋ2 + (k1 + k2)x1 + (−k2)x2 = F1

m2ẍ2 + (−c2)ẋ1 + (c2 + c3)ẋ2 + (−c3)ẋ3 + (−k2)x1 + (k2 + k3)x2 + (−k3)x3 = F2

m3ẍ3 + (−c3)ẋ2 + c3ẋ3 + (−k3)x2 + k3x3 = F3
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These equations can be rewritten as following

mẍ+ cẋ+ kx = F (4.9)

where

m =

⎡⎣ m1 0 0
0 m2 0
0 0 m3

⎤⎦ ; c =

⎡⎣ c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

⎤⎦
k =

⎡⎣ k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3

⎤⎦ ; x =

⎡⎣ x1
x2
x3

⎤⎦ ; F =

⎡⎣ F1
F2
F3

⎤⎦ (4.10)

The vector F represents the external excitation that can be applied to the system.

4.3 ANALYSIS OF THE MATHEMATICAL MODEL

4.3.1 Natural frequencies and natural modes of the undamped system.
The matrix of inertia and the matrix of stiffness can be assessed from the dimensions
of the object. Hence, the natural frequencies and the corresponding natural modes
of the undamped system can be produced. Implementation of the particular solution

x = X cosωt (4.11)

into the equation of the free motion of the undamped system

mẍ+ kx = F (4.12)

results in a set of the algebraic equations that are linear with respect to the vector
X. ¡−ω2m+ k

¢
X = 0 (4.13)

Solution of the eigenvalue and eigenvector problem yields the natural frequencies and
the corresponding natural modes.

±ω1, ±ω2, ±ω3 (4.14)

Ξ = [Ξ1,Ξ2,Ξ2] (4.15)

For detailed explanation see pages 102 to 105
4.3.2 Equations of motion in terms of the normal coordinates - transfer

functions
If one assume that the damping matrix is of the following form

c =µm+κk (4.16)

the equations of motion 4.9 can be expressed in terms of the normal coordinates
η = Ξ−1x (see section normal coordinates - modal damping page 105)

η̈n + 2ξnωnη̇n + ω2nηn = ΞT
nF(t), n = 1, 2, 3 (4.17)
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The response of the system along the coordinate xp due to the harmonic excitation
Fqe

iωt along the coordinate xq, according to the formula 2.142 (page 107), is

xp = eiωt
NX
n=1

ΞpnΞqnFq

ω2n − ω2 + 2ςnωnωi
(4.18)

Hence the acceleration along the coordinate xp as the second derivative with respect
to time, is

ẍp = −ω2eiωt
NX
n=1

ΞpnΞqnFq

ω2n − ω2 + 2ςnωnωi
(4.19)

It follows that the transfer function between the coordinate xp and xq, according to
2.144 is

Rpq(iω) =
ẍp

Fqeiωt
= −ω2 xp

Fqeiωt
=

= −ω2
NX
n=1

µ
ΞpnΞqn(ω

2
n − ω2)

(ω2n − ω2)2 + 4ς2nω
2
nω

2
+

−2ΞpnΞqnςnωnωi

(ω2n − ω2)2 + 4ς2nω
2
nω

2

¶
q = 1, 2, 3

(4.20)

The modal damping ratios ς1, ς2 and ς3 are unknown and are to be identified by fitting
the analytical transfer functions into the experimental ones. Since the transducer
5 (Fig. 1) produces acceleration, the laboratory installation permits to obtain the
acceleration to force transfer function. The theory on the experimental determination
of the transfer functions is given in the section Experimental determination of the
transfer functions (page 100).
4.3.3 Extraction of the natural frequencies and the natural modes from

the transfer functions
The problem of determination of the natural frequencies and the natural modes from
the displacement - force transfer functions was explained in details in section
Determination of natural frequencies and modes from the transfer functions (page
107). Let us do similar manipulation on the acceleration - force transfer function.
First of all let us notice that

if ω ∼= ωn Rpq(iωn) ∼= −ω2
µ
ΞpnΞqn(ω

2
n − ω2)

4ς2nω
2
nω

2
+
−ΞpnΞqni

2ςnωnω

¶
q = 1, 2, 3 (4.21)

Since the real part of the transfer function is equal to zero for ω = ωn, its absolute
value is equal to the absolute value of the imaginary part.

|Rpq(iωn)| ∼=
¯̄̄̄
ΞpnΞqn

2ςn

¯̄̄̄
q = 1, 2, 3 (4.22)

and phase ϕ for ω = ωn

ϕ = arctan
Im(Rpq(iωn))

Re(Rpq(iωn))
= arctan∞ = ±90o (4.23)
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Hence, the frequencies ω corresponding to the phase ±90o are the wanted natural
frequencies ωn.

Because ςn and Ξpn are constants, magnitudes of the absolute value of the
transfer functions for ω = ωn represents the modes Ξ1n, Ξ2n, Ξ3n associated with the
n − th natural frequency. An example of extracting the natural frequency and the
corresponding natural mode from the transfer function is shown in Fig. 4
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Figure 4

4.4 EXPERIMENTAL INVESTIGATION

4.4.1 Acquiring of the physical model initial parameters
The physical model is determined by the following parameters
m1, m2 m3 - masses of the blocks
k1, k2 k3 - stiffness of the springs
c1, c2 c3 - damping coefficients
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The blocks were weighted before assembly and their masses are
m1 = 0.670kg
m2 = 0.595kg
m3 = 0.595kg
The formula 4.7 and 4.8

ki =
24EJ

H3
i

; J =
wt3

12
(4.24)

allows the stiffness ki to be computed.
The following set of data is required

E = 0.21× 1012N/m2

w = ......................m to be measured during the laboratory session
t = ......................m to be measured during the laboratory session
H1 = ......................m to be measured during the laboratory session
H2 = ......................m to be measured during the laboratory session
H3 = ......................m to be measured during the laboratory session
The damping coefficients ci are difficult to be assessed. Alternatively the damping
properties of the system can be uniquely defined by means of the three modal damp-
ing ratios ς1, ς2 and ς3 (see equation 4.17). ξ = 1 corresponds to the critical damping.
Inspection of the free vibrations of the object lead to the conclusion that the damp-
ing is much smaller then the critical one. Hence, as the first approximation of the
damping, let us adopt the following damping ratios
ς1 = 0.01
ς2 = 0.01
ς2 = 0.01

4.4.2 Measurements of the transfer functions
According to the description given in section Experimental determination of the trans-
fer functions (page 100) to produce the transfer function Rpq(iω) you have to measure
response of the system along the coordinate xp due to impulse along the coordinate
xq. Since the transducer 5 (Fig. 1) is permanently attached to the mass m3 and the
impulse can be applied along the coordinates x1, x2 or x3, the laboratory installation
permits the following transfer functions to be obtained.

R31(iω) R32(iω) R33(iω) (4.25)

The hammer 6 should be used to introduce the impulse. To obtain a reliable result,
10 measurements are to be averaged to get one transfer function. These impulses
should be applied to the middle of the block. The spectrum analyzer must show the
’waiting for trigger’ sign before the subsequent impulse is applied.

As the equipment used is delicate and expensive, one has to observe the fol-
lowing;

1. always place the hammer on the pad provided when it is not used
2. when applying the impulse to the object make sure that the impulse is not

excessive
Harder impact does not produce better results.
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4.4.3 Identification of the physical model parameters
In a general case, the identification of a physical model parameters from the transfer
functions bases on a very complicated curve fitting procedures. In this experiment,
to fit the analytical transfer functions into the experimental one, we are going to use
the trial and error method. We assume that the following parameters

m1, m2, m3, H1, H2, H3, w, E (4.26)

were assessed with a sufficient accuracy. Uncertain are

t, ξ1, ξ2, ξ3 (4.27)

Use the parameter t to shift the natural frequencies (increment of t results in shift
of the natural frequencies to the right). Use the parameters ξi to align the picks of
the absolute values of the transfer functions (increment in the modal damping ratio
results in lowering the pick of the analytical transfer function). Work on one (say
R33(iω) transfer function only.
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4.5 WORKSHEET

1. Initial parameters of physical model
Measure the missing parameters and insert them to the table below

m1 = 0.670kg
Mass of the block

1
H1 = ..................m

length of the spring
1

m2 = 0.595kg
Mass of the block

2
H2 = ..................m

length of the spring
2

m1 = 0.595kg
Mass of the block

3
H3 = ..................m

length of the spring
3

ξ1 = 0.01
damping ratio
of mode 1

E = 0.21× 1012N/m2 Young’s
modulus

ξ2 = 0.01
damping ratio
of mode 2

w = .....................m
width of the
springs

ξ3 = 0.01
damping ratio
of mode 3

t = .....................m
thickness of the

springs
Run program ’Prac3 ’∗ and choose menu ’Input data’ to enter the above data.
Set excitation coordinate 3, response coordinate 3.
Save the initial data.

2. Experimental acceleration-force transfer functions R33(iω)
Choose menu ’Frequency response measurements’
Set up the spectrum analyzer by execution of the sub-menu ’Setup analyzer ’
Choose sub-menu ’Perform measurement ’, execute it and apply 10 times im-

pulse along the coordinates 3
Choose sub-menu ’Time/Frequency domain toggle’ to see the measured trans-

fer function
Choose sub-menu ’Transfer TRF to computer ’ and execute it
Exit menu ’Frequency response measurements’
Choose ’Response display/plot’ to display the transfer functions

3. Identification of the thickness t and the modal damping ratios ξi
You can see both the experimental and analytical transfer function R33(iω).

By varying t, ξ1, ξ2, ξ3 in the input data, try to fit the analytical data into the
experimental one. Use the parameter t to shift the natural frequencies (increment
of t results in shift of the natural frequencies to the right). Use the parameters ξi
to align the picks of the absolute values of the transfer functions (increment in the
modal damping ratio results in lowering the pick of the analytical transfer function).

∗program designed by Dr. T. Chalko
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Record the identified parameters in the following table

m1 = 0.670kg
Mass of the block

1
H1 = ..................m

length of the spring
1

m2 = 0.595kg
Mass of the block

2
H2 = ..................m

length of the spring
2

m1 = 0.595kg
Mass of the block

3
H3 = ..................m

length of the spring
3

ξ1 = 0.01
damping ratio
of mode 1

E = 0.21× 1012N/m2 Young’s
modulus

ξ2 = 0.01
damping ratio
of mode 2

w = .....................m
width of the
springs

ξ3 = 0.01
damping ratio
of mode 3

t = .....................m
thickness of the

springs
Save the identified parameters.
Plot the analytical and the experimental transfer function R33(iω)

4. Experimental and analytical transfer functions R31(iω) and R32(iω)
Choose menu ’Input data’ and set the excitation coordinate to 1 and the

response coordinate to 3
Repeat all steps of the section 2
Plot the transfer function R31(iω)
Choose menu ’Input data’ and set the excitation coordinate to 2 and the

response coordinate to 3
Repeat all steps of the section 2
Plot the transfer function R32(iω)

5. Natural frequencies and the corresponding natural modes
Choose menu ’Mode shapes display/plot ’ to produce the analytical frequencies

and modes
Plot the natural modes
From plots of the experimental transfer functions R31(iω), R32(iω), R33(iω)

determine the natural frequencies and the natural modes
Insert the experimental and analytical frequencies into the table below

natural frequency
1

natural frequency
2

natural frequency
3

analytical ......................... ......................... .........................
experimental ......................... ......................... .........................

6. Conclusions




